Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-24T19:58:10.908Z Has data issue: false hasContentIssue false

Evolutionary catastrophes and the Goldilocks problem

Published online by Cambridge University Press:  28 September 2007

Milan M. Ćirković
Astronomical Observatory of Belgrade, Volgina 7, 11160 Belgrade, Serbia e-mail:


One of the mainstays of the controversial ‘rare Earth’ hypothesis is the ‘Goldilocks problem’ regarding various parameters describing a habitable planet, partially involving the role of mass extinctions and other catastrophic processes in biological evolution. Usually, this is construed as support for the uniqueness of the Earth's biosphere and intelligent human life. Here it is argued that this is a misconstrual and that, on the contrary, observation-selection effects when applied to catastrophic processes make it very difficult for us to discern whether the terrestrial biosphere and evolutionary processes which created it are exceptional in the Milky Way or not. This agnosticism, in turn, supports the validity and significance of practical astrobiological and SETI research.

Research Article
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Alvarez, L., Alvarez, W., Asaro, F. & Michel, H.V. (1980). Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science 208, 10951108.CrossRefGoogle ScholarPubMed
Ambrose, S.H. (1998). Late Pleistocene human population bottlenecks, volcanic winter, and differentiation of modern humans. J. Human Evolution 34, 623651.CrossRefGoogle Scholar
Barrow, J.D. & Tipler, F.J. (1986). The Anthropic Cosmological Principle. Oxford University Press, New York.Google Scholar
Benton, M.J. (1995). Diversification and extinction in the history of life. Science 268, 5258.CrossRefGoogle ScholarPubMed
Bostrom, N. (2002). Existential risks. J. Evolution Technol. 9 ( 130.Google Scholar
Bostrom, N. & Ćirković, M.M. (eds) (2008). Global Catastrophic Risks. Oxford University Press, Oxford. In press.CrossRefGoogle Scholar
Carter, B. (1983). The anthropic principle and its implications for biological evolution. Philos. Trans. R. Soc. London A 310, 347363.Google Scholar
Carter, B. (1993). The anthropic selection principle and the ultra-Darwinian synthesis. In The Anthropic Principle, Proceedings of the Second Venice Conference on Cosmology and Philosophy, eds Bertola, F. & Curi, U., pp. 3366. Cambridge University Press, Cambridge.Google Scholar
Conway, Morris S. (1998). The Crucible of Creation: The Burgess Shale and the Rise of Animals. Oxford University Press, Oxford.Google Scholar
Conway, Morris S. (2003). Life's Solution: Inevitable Humans in a Lonely Universe. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Courtillot, V. (1999). Evolutionary Catastrophes. Cambridge University Press, Cambridge.Google Scholar
Ćirković, M.M. & Bradbury, R.J. (2006). Galactic gradients, postbiological evolution and the apparent failure of SETI. New Ast. 11, 628639.CrossRefGoogle Scholar
Dick, S.J. (2003). Cultural evolution, the postbiological universe and SETI. Int. J. Astrobiology 2, 6574.CrossRefGoogle Scholar
Dyson, F.J. (1966). The search for extraterrestrial technology. In Perspectives in Modern Physics, ed. Marshak, R.E., pp. 641655. Interscience Publishers, New York.Google Scholar
Erwin, D.H. (2006). Extinction. Princeton University Press, Princeton.Google Scholar
Gould, S.J. (1987). SETI and the wisdom of Casey Stengel. In The Flamingo's Smile: Reflections in Natural History, pp. 403413. W. W. Norton, New York.Google Scholar
Gould, S.J. (1989). Wonderful Life. W. W. Norton, New York.Google Scholar
Greaves, J.S., Wyatt, M.C., Holland, W.S. & Dent, W.R.F. (2004). The debris disc around τ Ceti: a massive analogue to the Kuiper Belt. Mon. Not. R. Astron. Soc. 351, L54L58.CrossRefGoogle Scholar
Hughes, D.W. (2003). The approximate ratios between the diameters of terrestrial impact craters and the causative incident asteroids. Mon. Not. R. Astron. Soc. 338, 9991003.CrossRefGoogle Scholar
Hut, P. & Rees, M.J. (1983). How stable is our vacuum? Nature 302, 508509.CrossRefGoogle Scholar
Kitchell, J.A. & Pena, D. (1984). Periodicity of extinctions in the geologic past: deterministic versus stochastic explanations. Science 226, 689692.CrossRefGoogle ScholarPubMed
Leslie, J. (1996). The End of the World: The Ethics and Science of Human Extinction. Routledge, London.Google Scholar
Maher, K.A. & Stevenson, D.J. (1988). Impact frustration of the origin of life. Nature 331, 612614.CrossRefGoogle ScholarPubMed
McKay, C.P. (1996). Time for intelligence on other planets. In Circumstellar Habitable Zones, Proceedings of The First International Conference, ed. Doyle, L.R., pp. 405419. Travis House Publications, Menlo Park, CA.Google Scholar
McShea, D.W. (1998). Possible largest-scale trends in organismal evolution: eight ‘Live Hypotheses’. Annu. Rev. Ecol. Syst. 29, 293318.CrossRefGoogle Scholar
Rampino, M.R. & Self, S. (1992). Volcanic winter and accelerated glaciation following the Toba super-eruption. Nature 359, 5052.CrossRefGoogle Scholar
Raup, D.M. (1991). Extinction: Bad Genes or Bad Luck? W. W. Norton, New York.Google ScholarPubMed
Russell, D.A. (1983). Exponential evolution: implications for extraterrestrial intelligent life. Adv. Space Res. 3, 95103.CrossRefGoogle Scholar
Shanahan, T. (1999). Evolutionary progress from Darwin to Dawkins. Endeavour 23, 171174.CrossRefGoogle ScholarPubMed
Shanahan, T. (2001). Methodological and contextual factors in the Dawkins/Gould dispute over evolutionary progress. Stud. Hist. Phil. Biol. & Biomed. Sci. 32, 127151.CrossRefGoogle Scholar
Tipler, F.J. (2003). Intelligent life in cosmology. Int. J. Astrobiology 2, 141148.CrossRefGoogle Scholar
Ward, P.D. & Brownlee, D. (2000). Rare Earth: Why Complex Life is Uncommon in the Universe. Springer, New York.CrossRefGoogle Scholar
Webb, S. (2002). Where is Everybody? Fifty Solutions to the Fermi's Paradox. Copernicus, New York.Google Scholar
Wright, R. (2000). Nonzero: The Logic of Human Destiny. Pantheon Books, New York.Google Scholar