Hostname: page-component-7d684dbfc8-2bg86 Total loading time: 0.001 Render date: 2023-09-29T17:31:50.641Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Habitability around F-type stars

Published online by Cambridge University Press:  25 March 2014

S. Sato
Affiliation:
Department of Physics, University of Texas at Arlington, Arlington, TX 76019, USA
M. Cuntz*
Affiliation:
Department of Physics, University of Texas at Arlington, Arlington, TX 76019, USA
C. M. Guerra Olvera
Affiliation:
Department of Astronomy, University of Guanajuato, 36000 Guanajuato, GTO, Mexico
D. Jack
Affiliation:
Department of Astronomy, University of Guanajuato, 36000 Guanajuato, GTO, Mexico
K.-P. Schröder
Affiliation:
Department of Astronomy, University of Guanajuato, 36000 Guanajuato, GTO, Mexico
*

Abstract

We explore the general astrobiological significance of F-type main-sequence stars with masses between 1.2 and 1.5 M. Special consideration is given to stellar evolutionary aspects due to nuclear main-sequence evolution. DNA is taken as a proxy for carbon-based macromolecules following the paradigm that extraterrestrial biology may be most likely based on hydrocarbons. Consequently, the DNA action spectrum is utilized to represent the impact of the stellar ultraviolet (UV) radiation. Planetary atmospheric attenuation is taken into account based on parameterized attenuation functions. We found that the damage inflicted on DNA for planets at Earth-equivalent positions is between a factor of 2.5 and 7.1 higher than for solar-like stars, and there are intricate relations for the time-dependence of damage during stellar main-sequence evolution. If attenuation is considered, smaller factors of damage are obtained in alignment to the attenuation parameters. This work is motivated by earlier studies indicating that the UV environment of solar-type stars is one of the most decisive factors in determining the suitability of exosolar planets and exomoons for biological evolution and sustainability.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brack, A. (ed.) (1998). The Molecular Origins of Life: Assembling Pieces of the Puzzle, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Buccino, A.P., Lemarchand, G.A. & Mauas, P.J.D. (2006). Icarus 183, 491503.CrossRefGoogle Scholar
Chabrier, G. (2003). Publ. Astron. Soc. Pacific 115, 763795.CrossRefGoogle Scholar
Cockell, C.S. (1998). J. Theor. Biol. 193, 717729.CrossRefGoogle Scholar
Cockell, C.S. (1999). Icarus 141, 399407.CrossRefGoogle Scholar
Cockell, C.S. (2002). Part III. Electromagnetic Fields, Radiation and Life. In Astrobiology: The Quest for the Conditions of Life, ed. Horneck, G. & Baumstark-Khan, C., pp. 219232. Springer, Berlin.CrossRefGoogle Scholar
Cuntz, M. (2014). Astrophys. J. 780(14), 19.Google Scholar
Cuntz, M., von Bloh, W., Schröder, K.-P., Bounama, C. & Franck, S. (2012). Int. J. Astrobiol. 11, 1523.CrossRefGoogle Scholar
Diffey, B.L. (1991). Phys. Med. Biol. 36, 299328.CrossRefGoogle Scholar
Forget, F. & Pierrehumbert, R.T. (1997). Science 278, 12731276.CrossRefGoogle Scholar
Grenfell, J.L., Stracke, B., von Paris, P., Patzer, B., Titz, R., Segura, A. & Rauer, H. (2007). Plasma Space Sci. 55, 661671.CrossRefGoogle Scholar
Güdel, M. (2007). Living Rev. Sol. Phys. 4(3), 137.CrossRefGoogle Scholar
Guinan, E.F. & Ribas, I. (2002). In The Evolving Sun and Its Influence on Planetary Environments, Proc. ASP Conf. Ser. 269, ed. Montesinos, B., Gimenez, A. & Guinan, E.F., pp. 85106. Astronomical Society of the Pacific, San Francisco.Google Scholar
Hauschildt, P.H. (1992). J. Quant. Spectrosc. Radiat. Transfer 47, 433453.CrossRefGoogle Scholar
Hauschildt, P.H. & Baron, E. (1999). J. Comput. Appl. Math. 109, 4163.CrossRefGoogle Scholar
Hauschildt, P.H., Allard, F. & Baron, E. (1999). Astrophys. J. 512, 377385.CrossRefGoogle Scholar
Hauschildt, P.H., Barman, T.S., Baron, E. & Allard, F. (2003). In Stellar Atmosphere Modeling, ed. Hubeny, I., Mihalas, D. & Werner, K., pp. 227238. ASP Conf. Ser. 288, San Francisco.Google Scholar
Henderson, S.T. (1977). Daylight and Its Spectrum, 2nd edn, p. 349. Wiley, New York.Google Scholar
Horneck, G. (1995). J. Photochem. Photobiol. B: Biol. 31, 4349.CrossRefGoogle Scholar
Horner, J. & Jones, B.W. (2010). Int. J. Astrobiol. 9, 273291.CrossRefGoogle Scholar
Jones, B.W. (2008). Int. J. Astrobiol. 7, 279292.CrossRefGoogle Scholar
Kaltenegger, L. et al. (2010). Astrobiology 10, 103112.CrossRefGoogle Scholar
Kaltenegger, L., Miguel, Y. & Rugheimer, S. (2012). Int. J. Astrobiol. 11, 297307.CrossRefGoogle Scholar
Kasting, J.F., Whitmire, D.P. & Reynolds, R.T. (1993). Icarus 101, 108128.CrossRefGoogle Scholar
Kroupa, P. (2002). Science 295(5552), 8291.CrossRefGoogle Scholar
Kudritzki, R.-P. & Puls, J. (2000). Annu. Rev. Astron. Astrophys. 38, 613666.CrossRefGoogle Scholar
Lammer, H., Selsis, F., Ribas, I., Guinan, E.F., Bauer, S.J. & Weiss, W.W. (2003). Astrophys. J. Lett. 598, L121L124.CrossRefGoogle Scholar
Lammer, H. et al. (2009). Astron. Astrophys. Rev. 17, 181249.CrossRefGoogle Scholar
Lammer, H. et al. (2013). Astrobiology 13, 793813.CrossRefGoogle Scholar
Linsky, J.L. (1980). Ann. Rev. Astron. Astrophys. 18, 439488.CrossRefGoogle Scholar
Maeder, A. & Meynet, G. (1988). Astron. Astrophys. Suppl. Ser. 76, 411425.Google Scholar
Meadows, V. & Seager, S. (2011). In Exoplanets, ed. Seager, S., pp. 441470. University of Arizona Press, Tucson.Google Scholar
Peak, M.J. & Peak, J.G. (1986). In The Biological Effects of UVA Radiation, ed. Urbach, F. & Gange, R.W., pp. 4256. Praeger, New York.Google Scholar
Pols, O.R., Tout, C.A., Eggleton, P.P. & Han, Z. (1995). Mon. Not. R. Astron. Soc. 274, 964974.CrossRefGoogle Scholar
Pols, O.R., Schröder, K.-P., Hurley, J.R., Tout, C.A. & Eggleton, P.P. (1998). Mon. Not. R. Astron. Soc. 298, 525536.CrossRefGoogle Scholar
Rettberg, P. & Rothschild, L.J. (2002). Part III. Electromagnetic Fields, Radiation and Life. In Astrobiology: The Quest for the Conditions of Life, ed. Horneck, G. & Baumstark-Khan, C., pp. 233243. Springer, Berlin.CrossRefGoogle Scholar
Scalo, J. et al. (2007). Astrobiology 7, 85166.CrossRefGoogle Scholar
Schröder, K.-P. & Cuntz, M. (2005). Astrophys. J. Lett. 630, L73L76.CrossRefGoogle Scholar
Schröder, K.-P. & Cuntz, M. (2007). Astron. Astrophys. 465, 593601.CrossRefGoogle Scholar
Schröder, K.-P. & Smith, R.C. (2008). Mon. Not. R. Astron. Soc. 386, 155163.CrossRefGoogle Scholar
Schröder, K.-P., Pols, O.R. & Eggleton, P.P. (1997). Mon. Not. R. Astron. Soc. 285, 696710.CrossRefGoogle Scholar
Segura, A., Krelove, K., Kasting, J.F., Sommerlatt, D., Meadows, V., Crisp, D., Cohen, M. & Mlawer, E. (2003). Astrobiology 3, 689708.CrossRefGoogle Scholar
Selsis, F., Kasting, J.F., Levrard, B., Paillet, J., Ribas, I. & Delfosse, X. (2007). Astron. Astrophys. 476, 13731387.CrossRefGoogle Scholar
Setlow, R.B. (1974). Proc. Natl. Acad. Sci. USA 71, 33633366.CrossRefGoogle Scholar
Underwood, D.R., Jones, B.W. & Sleep, P.N. (2003). Int. J. Astrobiol. 2, 289299.CrossRefGoogle Scholar
Von Bloh, W., Cuntz, M., Schröder, K.-P., Bounama, C. & Franck, S. (2009). Astrobiology 9, 593602.CrossRefGoogle Scholar