Skip to main content Accessibility help
Hostname: page-component-59b7f5684b-j5sqr Total loading time: 0.389 Render date: 2022-10-01T06:26:04.340Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Observational signatures of self-destructive civilizations

Published online by Cambridge University Press:  23 October 2015

Adam Stevens
Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK15 0BT, UK UK Centre for Astrobiology, University of Edinburgh, Edinburgh, EH9 3FD, UK
Duncan Forgan*
SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, UK
Jack O'Malley James
SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, UK Department of Astronomy, Carl Sagan Institute, Cornell University, Ithaca, NY 14853, USA


We address the possibility that intelligent civilizations that destroy themselves could present signatures observable by humanity. Placing limits on the number of self-destroyed civilizations in the Milky Way has strong implications for the final three terms in Drake's Equation, and would allow us to identify which classes of solution to Fermi's Paradox fit with the evidence (or lack thereof). Using the Earth as an example, we consider a variety of scenarios in which humans could extinguish their own technological civilization. Each scenario presents some form of observable signature that could be probed by astronomical campaigns to detect and characterize extrasolar planetary systems. Some observables are unlikely to be detected at interstellar distances, but some scenarios are likely to produce significant changes in atmospheric composition that could be detected serendipitously with next-generation telescopes. In some cases, the timing of the observation would prove crucial to detection, as the decay of signatures is rapid compared with humanity's communication lifetime. In others, the signatures persist on far longer timescales.

Research Article
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Badescu, V. & Cathcart, R.B. (2000). Stellar engines for Kardashev's type II civilisations. J. Br. Interplanet. Soc. 53, 297306.Google Scholar
Ball, J.A. (1973). The zoo hypothesis. Icarus 19, 347349.CrossRefGoogle Scholar
Barnes, J.W. & Fortney, J.A. (2004). Transit detectability of ring systems around extrasolar giant planets. Astrophys. J. 616, 11931203.10.1086/425067CrossRefGoogle Scholar
Barstow, J.K., Aigrain, S., Irwin, P.G.J., Kendrew, S. & Fletcher, L.N. (2015). Transit spectroscopy with James Webb Space Telescope: systematics, starspots and stitching. Mon. Not. R. Astron. Soc. 448, 25462561.10.1093/mnras/stv186CrossRefGoogle Scholar
Barth, C.A., Stewart, A.I. & Hord, C.W. (1972). Mariner 9 ultraviolet spectrometer experiment: Mars airglow spectroscopy and variations in Lyman alpha. Icarus 17, 457468. Scholar
Baskin, N.J. et al. (2013). Secondary eclipse photometry of the Exoplanet WASP-5b with warm spitzer. Astrophys. J. 773, 5. article id. 124.CrossRefGoogle Scholar
Batalha, N., Kalirai, J.S., Lunine, J.I. & Mandell, A. (2014). Transiting exoplanet simulations with the James Webb space telescope. In presented at American Astronomical Society, AAS Meeting #223, #325.03Google Scholar
Berger, E. (2013). Short duration gamma ray bursts. Annu. Rev. Astron. Astrophys. 52, 43105.10.1146/annurev-astro-081913-035926CrossRefGoogle Scholar
Bostrom, N. (2003). Are we living in a computer simulation? Philos. Quart. 53(211), 243255.CrossRefGoogle Scholar
Brin, G.D. (1983). The Great Silence – the Controversy Concerning Extraterrestrial Intelligent Life. Quarterly Journal of the Royal Society 24, 283309.Google Scholar
Buratti, B.J., Hillier, J.K. & Wang, M. (1996). The lunar opposition surge: observations by clementine. Icarus 124, 490499.CrossRefGoogle Scholar
Burrows, A.S. (2014). Spectra as windows into exoplanet atmospheres. Proc. Nat. Acad. Sci. 111(35), 1260112609.CrossRefGoogle ScholarPubMed
Canup, R.M. (2008). Lunar-forming collisions with pre-impact rotation. Icarus 196, 518538.CrossRefGoogle Scholar
Charbonneau, D. et al. (2005). Detection of thermal emission from an extrasolar planet. Astrophys. J. 626, 523529.10.1086/429991CrossRefGoogle Scholar
Cirkovic, M.M. (2009). Fermi's paradox: the last challenge for copernicanism? Serbian Astron. J. 178, 120.CrossRefGoogle Scholar
Cody, A.M. & Sasselov, D. (2004). Stellar evolution with enriched surface convection zones. I. General effects of planet consumption. Astrophys. J. 622, 704713.CrossRefGoogle Scholar
Crawford, I. & Baxter, S. (2015). The lethality of interplanetary warfare: a fundamental constraint on extraterrestrial liberty. In The Meaning of Liberty Beyond Earth, ed. Cockell, C.S., pp. 187198. Springer International Publishing, London.CrossRefGoogle Scholar
Dick, S.J. (2003). Cultural evolution, the postbiological universe and SETI. Int. J. Astrobiol. 2, 6574.CrossRefGoogle Scholar
Domagal-Goldman, S.D., Meadows, V.S., Claire, M.W. & Kasting, J.F. (2011) Using biogenic sulfur gases as remotely detectable biosignatures on anoxic planets. Astrobiology 11, 419441.CrossRefGoogle ScholarPubMed
Dressing, C.D. & Charbonneau, D. (2013). The occurrence rate of small planets around small stars. Astrophys. J. 767, article id. 95.10.1088/0004-637X/767/1/95CrossRefGoogle Scholar
Drexler, E. (1986). Engines of Creation: The Coming Era of Nanotechnology, ISBN-10 0385199732.Google Scholar
Dyson, F.J. (1960). Search for artificial stellar sources of infrared radiation. Science 131, 16671668.CrossRefGoogle ScholarPubMed
Fischer, G. et al. (2011). Overview of Saturn Lightning Observations. In Proc. of the 7th Int. Workshop on Planetary, Solar and Heliospheric Radio Emissions (PRE VII), held at Graz, Austria, 15–17 September, 2010, pp. 135–144.CrossRefGoogle Scholar
Fishman, G.J. & Meegan, C.A. (1995). Gamma ray bursts. Annu. Rev. Astron. Astrophys. 33, 415468.10.1146/annurev.aa.33.090195.002215CrossRefGoogle Scholar
Ferrin, I. (2014). The impending demise of comet C/2012 S1 (ISON). Planet. Space Sci. 96, 114119.CrossRefGoogle Scholar
Feynman, R.P. (1960). There's plenty of room at the bottom. Engineering and Science 23(5), 2236.Google Scholar
Fogg, M.J. (1987). Temporal aspects of the interaction among the first galactic civilizations The ‘Interdict Hypothesis. Icarus 69, 370384.10.1016/0019-1035(87)90112-6CrossRefGoogle Scholar
Forgan, D.H. (2011). Spatio-temporal constraints on the zoo hypothesis, and the breakdown of total hegemony. Int. J. Astrobiol. 10, 341347.CrossRefGoogle Scholar
Freitas (2000). Some Limits to Global Ecophagy by Biovorous Nanoreplicators, with Public Policy Recommendations. Report to the Foresight Institute. (accessed 7 July 14).Google Scholar
Galama, T.J. et al. (1998). Unusual Supernova in the error box of the gamma ray burst of 25th April 1998. Nature 395, 670672.CrossRefGoogle Scholar
Gaudi, B.S., Chang, H.Y. & Cheongho, H. (2003). Probing structures of distant extrasolar planets with microlensing. Astrophys. J. 586, 527539.CrossRefGoogle Scholar
Goudie, A.S. & Middleton, N.J. (2001). Saharan dust storms: nature and consequences. Earth-Sci. Rev. 56, 179204.CrossRefGoogle Scholar
Greer, R.G.H. et al. (1986). ETON 1: a data base pertinent to the study of energy transfer in the oxygen nightglow. Planet. Space Sci. 34(9), 771788.10.1016/0032-0633(86)90074-7CrossRefGoogle Scholar
Grenfell, J.L., Gebauer, S., Paris, P.v., Godolt, M. & Rauer, H. (2014). Sensitivity of biosignatures on Earth-like planets orbiting in the habitable zone of cool M-dwarf Stars to varying stellar UV radiation and surface biomass emissions. Planet. Space Sci. 98, 6676.CrossRefGoogle Scholar
Groombridge, B. & Jenkins, M.D. (2002). Global Biodiversity: Earth's Living Resources in the 21st Century. University of California Press, Berkeley and Los Angeles, California.Google Scholar
Hair, T.W. (2011). Temporal dispersion of the emergence of intelligence: an inter-arrival time analysis. Int. J. Astrobiol. 10, 131135.CrossRefGoogle Scholar
Hanson, R. (1998). The great filter: are we almost past it? (accessed 09/07/2014)Google Scholar
Hess, W.N. (1964). The Effects of High Altitude Explosions. National Aeronautics and Space Administration, Washington, DC. Scholar
Howard, A.W. et al. (2004). Search for nanosecond optical pulses from nearby solar-type stars. ApJ 613, 12701284.CrossRefGoogle Scholar
Imanaka, T., Fukutani, S., Yamamoto, M., Sakaguchi, A. & Hoshi, M. (2006). Radiological situation in the vicinity of semipalatinsk nuclear test site: dolon, mostik, cheremushka and budene settlements. J. Radiat. Res. 47(Suppl.), A121A127. 10.1269/jrr.47.A121CrossRefGoogle Scholar
Jackson, R.J., Ramsay, A.J., Christensen, C.D., Beaton, S., Hall, D.F. & Ramshaw, I.A. (2001). Expression of mouse interleukin-4 by a recombinant ectromelia virus suppresses cytolytic lymphocyte responses and overcomes genetic resistance to smallpox. J. Virol. 75, 12051210.CrossRefGoogle Scholar
Jacobson, S.A. & Morbidelli, A. (2014). Lunar and terrestrial planet formation in the grand tack scenario. Philos. Trans. R. Soc. A, 372, article id 0174CrossRefGoogle ScholarPubMed
Johnson, N.L., Stansbery, E., Whitlock, D.O., Abercromby, K.J. & Shoots, D. (2008). History of On-Orbit Satellite Fragmentations, 14th edn. NASA Orbital Debris Program Office NASA/TM-2008–214779, Houston.Google Scholar
Kurzweil, R. (1999). The Age of Spiritual Machines: When Computers Exceed Human Intelligence. Penguin Books, New York.Google Scholar
Kardashev, N. (1964). Transmission of information by extraterrestrial civilizations. Soviet Astron. 8, 217221.Google Scholar
Kessler, D.J. & Cour-Palais, B.G. (1978). Collision frequency of artificial satellites: the creation of a debris belt. J. Geophys. Res. 83, 26372646.CrossRefGoogle Scholar
Kopparapu, R.K. et al. (2013). Habitable zones around main sequence stars: new estimates. Astrophys. J. 765, article id 131.CrossRefGoogle Scholar
Kouveliotou, C., Meegan, C.A., Fishman, G.J., Bhat, N.P., Briggs, M.S., Koshut, T.M., Paciesas, W.S. & Pendleton, G.N. (1993). Identification of two classes of gamma-ray bursts. Astrophys. J. Lett. 413, L101L104.CrossRefGoogle Scholar
Krasnopolsky, V.A. (1985). Oxygen emissions in the night airglow of the Earth, Venus and Mars. Planet. Space Sci. 34, 511518.CrossRefGoogle Scholar
Kreidberg, L., Bean, J.L., Desert, J.-M., Benneke, B., Deming, D., Stevenson, K.B., Seager, S., Berta-Thompson, Z., Seifahrt, A. & Homeier, D. (2014). Clouds in the atmosphere of the super-Earth exoplanet GJ1214b. Nature 505(7481), 6972.CrossRefGoogle Scholar
Kristensen, H.M. & Norris, R.M. (2014). Worldwide deployments of nuclear weapons. Bulletin of the Atomic Scientists August 26, 2014 0096340214547619Google Scholar
Krivov, A.V., Eiroa, C., Löhne, T., Marshall, J.P., Montesinos, B., del Burgo, C., Absil, O., Ardila, D., Augereau, J.-C. & Bayo, A., et al. (2013). Herschel's cold debris disks: background galaxies or quiescent rims of planetary systems? Astrophys. J. 772, article id 32.CrossRefGoogle Scholar
Li, L.S., Lin, D.N.C. & Liu, X.W. Extent of pollution in planet-bearing stars. Astrophys. J. 685(2), 12101219.CrossRefGoogle Scholar
Lin, H.W., Abad, G.G. & Loeb, A. (2014). Detecting industrial pollution in the atmospheres of earth-like exoplanets. Astrophys. J. 792, 4. article id L7.CrossRefGoogle Scholar
Liou, J.C. (2006). Collision activities in the future orbital debris environment. Adv. Space Res. 38, 21022106.CrossRefGoogle Scholar
Madhusudhan, N., Knutson, H., Fortney, J. & Barman, T. (2014). Exoplanetary atmospheres. In Protostars and Planets VI, ed. Beuther, H., Klessen, R., Dullemond, C. & Henning, Th. University of Arizona Press, Tucson, 739762.Google Scholar
Mamajek, E.E., Cuillen, A.C., Pecaut, M.J., Moolekamp, F., Scott, E.L., Kenworthy, M.A., Collier-Cameron, A. & Parley, N. (2015). Planetary construction zones in occultation: discovery of an extrasolar ring system transiting a young sun-like star and future prospects for detecting eclipses by circumsecondary and circumplanetary disks. Astrophys. J. 143, 15, article 72.Google Scholar
Mason, J., Stupl, J., Marshall, W. & Levit, C. (2011). Orbital debris-debris collision avoidance. Adv. Space Res. 48, 16431655.CrossRefGoogle Scholar
Meléndez-Alvira, D.J., Meier, R.R., Picone, J.M., Feldman, P.D. & McLaughlin, B.M. (1999). Analysis of the oxygen nightglow measured by the Hopkins Ultraviolet Telescope: implications for ionospheric partial radiative recombination rate coefficients. J. Geophys. Res. 104(A7), 1490114913. doi: 10.1029/1999JA900136.CrossRefGoogle Scholar
Misra, A., Meadows, V., Claire, M. & Crisp, D. (2014). Using dimers to measure biosignatures and atmospheric pressures for terrestrial planets. Astrobiology 14(2), 6786.10.1089/ast.2013.0990CrossRefGoogle Scholar
Mustill, A.J. & Wyatt, M.C. (2011). A general model of resonance capture in planetary systems: first- and second-order resonances. MNRAS 413, 554572.CrossRefGoogle Scholar
Nicholson, A. & Forgan, D.H. (2013). Slingshot dynamics for self-replicating probes and the effect on exploration timescales. IJA 12, 337344.Google Scholar
O'Malley-James, J., Greaves, J.S., Raven, J.A. & Cockell, C.S. (2013). Swansong Biospheres: refuges for life and novel microbial biospheres on terrestrial planets near the end of their habitable lifetimes. Int. J. Astrobiol. 12, 99112.CrossRefGoogle Scholar
Petigura, E.A., Howard, A.W. & Marcy, G.W. (2013). Prevalence of Earth-size planets orbiting Sun-like stars. PNAS 110, 1927319278.CrossRefGoogle ScholarPubMed
Phoenix, C. & Drexler, E. (2004). Safe exponential manufacturing. Nanotechnology 15, 869872.10.1088/0957-4484/15/8/001CrossRefGoogle Scholar
Pilcher (2003). Biosignatures of early earths. Astrobiology 3, 471486.CrossRefGoogle Scholar
Rampadarath, H., Morgan, J.S., Tingay, S.J. & Trott, C.M. (2012). The first very long baseline interferometric SETI experiment. Astron. J. 144(2), article id. 38.CrossRefGoogle Scholar
Rauer, H. et al. (2014). The PLATO 2.0 mission. Exp. Astron. 38, 249330.CrossRefGoogle Scholar
Reines, A.E. & Marcy, G.W. (2002). Optical search for extraterrestrial intelligence: a spectroscopic search for laser emission from nearby stars. Publ. Astron. Soc. Pac. 114, 416426.CrossRefGoogle Scholar
Richard, M., Kronig, L., Belloni, F., Rossi, S., Gass, V., Araomi, S., Gavrilovich, I., Shea, H., Paccolat, C. & Thiran, J.P. (2013). Uncooperative Rendezvous and Docking for MicroSats: The Case for CleanSpace One, RAST paper. (accessed 10/07/14)Google Scholar
Richard, A.K. (1999). For radioactive waste from weapons, a home at last. Science 283(5408), 16261628.Google Scholar
Ricker, G.R. et al. (2014). Transiting Exoplanet Survey Satellite (TESS). Proc. SPIE 9143, 15. id. 914320.Google Scholar
Robock, A., Oman, L. & Stenchikov, G.L. (2007). Nuclear winter revisited with a modern climate model and current nuclear arsenals: still catastrophic consequences. J. Geophys. Res. 112, D13107.Google Scholar
Rothwell, P., Wager, J.H. & Sayers, J. (1963). Effect of the Johnston Island high-altitude nuclear explosion on the ionization density in the topside ionosphere. J. Geophys. Res. 68, 947949.CrossRefGoogle Scholar
Sakaguchi, A., Yamamoto, M., Hoshi, M., Imanaka, T., Apsalikov, K.N. & Gusev, B.I. (2006). External radiation in dolon village due to local fallout from the first USSR atomic bomb test in 1949. J. Radiat. Res. 47(Suppl.), A101A116.CrossRefGoogle Scholar
Schneider, J. et al. (2010). The far future of exoplanet direct characterization. Astrobiology 10, 121126.10.1089/ast.2009.0371CrossRefGoogle ScholarPubMed
Siemion, A.P.V. et al. (2013). A 1.1–1.9 GHz SETI survey of the kepler field. I. A search for narrow-band emission from select targets. Astrophys. J. 767, article id. 94.10.1088/0004-637X/767/1/94CrossRefGoogle Scholar
Shklovsky, J.S. & Sagan, C. (1966). Intelligent Life in the Universe. Holden-Day, San Francisco.Google Scholar
Tanvir, N. (2013). The highest redshift gamma ray bursts. In Proc. of the Seventh Huntsville Gamma Ray Burst Symp., Tennesse, April 2013.Google Scholar
Udry, S. et al. (2014). Exoplanet Science with the European Extremely Large Telescope. The Case for Visible and Near-IR Spectroscopy at High Resolution, White Paper, arXiv:1412.1048.Google Scholar
Vukotic, B. & Cirkovic, M.M. (2008). Neocatastrophism and the Milky Way Astrobiological Landscape. Serbian Astron. J. 176, 7179.CrossRefGoogle Scholar
Walpole, S.C., Prieto-Merino, D., Edwards, P., Cleland, J., Stevens, G. & Roberts, I. (2012). The weight of nations: an estimation of adult human biomass. BMC Public Health 12, 439.CrossRefGoogle ScholarPubMed
Walters, C., Hoover, R.A. & Kotra, R.K. (1980). Interstellar colonization: a new parameter for the Drake equation? Icarus 41, 193197.CrossRefGoogle Scholar
Waltham, D. (2015). Lucky Planet – Why Earth is Exceptional, and what that Means for Life in the Universe. Icon Books.Google Scholar
Ward, P. & Brownlee, D. (2000). Rare Earth: Why Complex Life is Uncommon in the Universe.CrossRefGoogle Scholar
Webb, P. (2002). If the Universe Is Teeming with Aliens - Where Is Everybody?: Fifty Solutions to Fermi's Paradox and the Problem of Extraterrestrial Life. Copernicus, ISBN-10 0387955011.Google Scholar
Weiss, L. (2011). The 1979 South Atlantic Flash: The Case for an Israeli Nuclear Test. Stanford University. (accessed 17 April 2012).Google Scholar
Whitmire, D.P. & Wright, D.P. (1980). Nuclear waste spectrum as evidence of technological extraterrestrial civilizations. Icarus 42, 149156.CrossRefGoogle Scholar
Wright, J.T., Mullan, B., Sigurdsson, S. & Povich, M.S. (2014). The G-Hat infrared search for extraterrestrial civilizations with large energy supplies. I. Background and justification. Astrophys. J. 792, 16, article id 26.Google Scholar
Zuluaga, J.I., Kipping, D.M., Sucerquia, M. & Alvarado, J.A. (2015). A novel method for identifying exoplanetary rings. Astrophys. J. 803(1), article id. L14, 7 pp.CrossRefGoogle Scholar
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Observational signatures of self-destructive civilizations
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Observational signatures of self-destructive civilizations
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Observational signatures of self-destructive civilizations
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *