Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-ns2hh Total loading time: 0.481 Render date: 2022-10-04T14:51:58.816Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Photosynthetic potential of planets in 3 : 2 spin–orbit resonances

Published online by Cambridge University Press:  06 May 2014

S.P. Brown
Affiliation:
UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Mayfield Road, Edinburgh EH9 3JZ, UK
A.J. Mead
Affiliation:
SUPA, Institute for Astronomy, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK
D.H. Forgan*
Affiliation:
UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Mayfield Road, Edinburgh EH9 3JZ, UK SUPA, Institute for Astronomy, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK
J.A. Raven
Affiliation:
Division of Plant Sciences, University of Dundee at TJHI, The James Hutton Institute, Invergowrie, Dundee, UK
C.S. Cockell
Affiliation:
UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Mayfield Road, Edinburgh EH9 3JZ, UK
*

Abstract

Photosynthetic life requires sufficient photosynthetically active radiation to metabolize. On Earth, plant behaviour, physiology and metabolism are sculpted around the night–day cycle by an endogenous biological circadian clock. The evolution of life was influenced by the Earth–Sun orbital dynamic, which generates the photo-environment incident on the planetary surface. In this work, the unusual photo-environment of an Earth-like planet (ELP) in 3 : 2 spin–orbit resonance is explored. Photo-environments on the ELP are longitudinally differentiated, in addition to differentiations related to latitude and depth (for aquatic organisms) which are familiar on Earth. The light environment on such a planet could be compatible with Earth's photosynthetic life although the threat of atmospheric freeze-out and prolonged periods of darkness would present significant challenges. We emphasize the relationship between the evolution of life on a planetary body with its orbital dynamics.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, P.W., Flint, S.D. & Caldwell, M.M. (1987). Arct. Alp. Res. 19, 21.CrossRefGoogle Scholar
Bar-Even, A., Noor, E., Lewis, N.E. & Milo, R. (2010). Proc. Natl. Acad. Sci. USA 107, 88888894. doi:10.1073/pnas.090716107.CrossRefGoogle Scholar
Beerling, D.J. & Osborne, C.P. (2002). Ann. Bot. 89, 329.CrossRefGoogle Scholar
Berger, A., Mélice, J.L. & Loutre, M.F. (2005). Paleoceanography 20, PA4019.CrossRefGoogle Scholar
Biswas, S. (2000). Cosmic Perspectives in Space Physics. Astrophysics and Space Science Library. p. 176. Netherlands, Springer, ISBN 0-7923-5813-9.CrossRefGoogle Scholar
Björn, L.O., Papageorgiou, G.C., Blankenship, R.E. & Govindjee, (2009). Photosynth. Res. 99, 8599.CrossRefGoogle Scholar
Blank, C.E. & Sanchez-Baracaldo, P. (2010). Geobiology 8, 123.CrossRefGoogle Scholar
Brentall, S.J., Beerling, D.J., Osborne, C.P., Harland, M., Francis, J.E., Valdes, P.J. & Wittig, V.E. (2005). Global Change Biol. 11, 2177.CrossRefGoogle Scholar
Britt, A.B. (1996). Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 75.CrossRefGoogle Scholar
Caldeira, K. & Kasting, J.F. (1992). Nature 360, 721.CrossRefGoogle Scholar
Cockell, C.S. (1999). Icarus 141, 399.CrossRefGoogle Scholar
Cockell, C.S., Raven, J.A., Kaltenegger, L. & Logan, R.C. (2009). Plant Ecol. Divers. 2, 207.CrossRefGoogle Scholar
Correia, A.C.M. & Laskar, J. (2004). Nature 429, 848.CrossRefGoogle Scholar
Dartnell, L.R. (2011). Astrobiology 11(6), 551582.CrossRefGoogle Scholar
Dobrovolskis, A. (2007). Icarus 192, 1.CrossRefGoogle Scholar
Dobrovolskis, A. (2009). Icarus 204, 1.CrossRefGoogle Scholar
Dobrovolskis, A. (2013). Icarus 226, 760.CrossRefGoogle Scholar
Dole, S.H. (1964). Habitable Planets for Man. Blaisdell, New York.Google Scholar
Dressing, C.D., Spiegel, D.S., Scharf, C.A., Menou, K. & Raymond, S.N. (2010). Astrophys. J. 721, 1295.CrossRefGoogle Scholar
Edson, A.R., Sukyoung, L., Bannon, P., Kasting, J.F. & Pollard, D. (2011). Icarus 212, 1.CrossRefGoogle Scholar
Edson, A.R., Kasting, J.F., Pollard, D., Lee, S. & Bannon, P.R. (2012). Astrobiology 12, 562571.CrossRefGoogle Scholar
Fabrycky, D. & Tremaine, S. (2007). Astrophys. J. 669, 1298.CrossRefGoogle Scholar
Falkowski, P.G. & Raven, J.A. (2007). Aquatic Photosynthesis, 2nd edn, p. 48. Princeton University Press, Princeton, NJ, USA.Google Scholar
Flynn, K.J. & Mitra, A. (2009). J. Plankton Res. 9, 77.Google Scholar
Flynn, K.J., Stoecker, D.K., Mitra, A., Raven, J.A., Glibert, P.M., Hansen, P.J., Granéli, E. & Burkholder, J.M. (2012). J. Plankt. Res. 35, 311.CrossRefGoogle Scholar
Fryxell, G.A. (1983). Survival Strategies of the Algae, p. 160. Cambridge University Press, Cambridge.Google Scholar
Hargraves, P.E. & French, F.W. (1983). Diatom resting spores: significance and strategies. In Survival strategies of the algae, ed. Fryxell, G.A., pp. 4968. Cambridge University Press, Cambridge.Google Scholar
Heller, R., Leconte, J. & Barnes, R. (2011). Astron. Astrophys., 528, A27.CrossRefGoogle Scholar
Heath, M.J., Doyle, L.R., Joshi, M.M. & Haberle, R.M. (1999). Orig. Life Evol. Biosph. 29, 405424.CrossRefGoogle Scholar
Hill, R. & Bendall, F.L. (1960). Nature 186, 137.Google Scholar
Hill, R. & Rich, P.R. (1983). Proc. Natl. Acad. Sci. USA 80, 978982.Google Scholar
Huang, S. (1959). Proc. Astron. Soc. Pacific 71, 421.CrossRefGoogle Scholar
Jewson, D.H., Granin, N.G., Zhdanov, A.A., Gorbunova, L.A., Bondarenko, N.A. & Gnatovsky, R.Y. (2008). Limnol. Oceanogr. 53, 11251136.CrossRefGoogle Scholar
Jones, R.I. (1994). Mar. Microb. Food Webs 8, 87.Google Scholar
Jones, H., Cockell, C.S., Goodson, C., Price, N., Simpson, A. & Thomas, B. (2009). Astrobiology 9, 563.CrossRefGoogle Scholar
Joshi, M. (2003). Astrobiology 3, 415.CrossRefGoogle Scholar
Joshi, M.M., Haberle, R.M. & Reynolds, R.T. (1997). Icarus 129, 450.CrossRefGoogle Scholar
Kane, S.R. & Gelino, D.M. (2012). Astrobiology 12, 946.CrossRefGoogle Scholar
Keafer, B.A. & Buesseler, K.O., Anderson, D.M. (1992). Mar. Micropaleontol. 20, 147161.CrossRefGoogle Scholar
Kiang, N., Siefert, J., Govindjee, & Blankenship, R.E. (2007a). Astrobiology 7, 222.CrossRefGoogle Scholar
Kiang, N., Segura, A., Tinetti, G. & Govindjee, (2007b). Astrobiology 7, 252.CrossRefGoogle Scholar
Kite, E.S., Gaidos, E., & Manga, M. (2011). Astrophys. J. 743, 41.CrossRefGoogle Scholar
Kopparapu, R.K., Ramirez, R., Kasting, J.F., Eymet, V., Robinson, T.D., Mahadevan, S., Terrien, R.C., Domagal-Goldman, S., Meadows, V. & Deshpande, R. (2013). Astrophys. J. 765, 131.CrossRefGoogle Scholar
Lammer, H., Bredehöft, J.H., Coustenis, A., Khodachenko, M.L., Kaltenegger, L., Grasset, O., Prieur, D., Raulin, F., Ehrenfreund, P. & Yamauchi, M. (2009). Astron. Astrophys. Rev. 17, 181.CrossRefGoogle Scholar
Lammer, H., Selsis, F., Ribas, I., Guinan, E.F., Bauer, S.J. & Weiss, W.W. (2003). Astrophys. J. 598, L121.CrossRefGoogle Scholar
Lewis, J., Harris, A.S.D., Jones, K.J. & Edmonds, R.L. (1999). J. Plankton Res. 21, 343354.CrossRefGoogle Scholar
Lovelock, J.E . & Whitfield, M. (1982). Nature 296, 561.CrossRefGoogle Scholar
Margot, J.L., Peale, S.J., Solomon, S.C., Hauck, S.A. II, Ghigo, F.D., Jurgens, R.F., Yseboodt, M., Giorgini, J.D., Padovan, S. & Campbell, D.B. (2012). J. Geophys. Res. 117, E00L09.CrossRefGoogle Scholar
Mayer, B., Kylling, A., Madronich, S. & Seckmeyer, G. (1998). J. Geophys. Res. 103, 241.Google Scholar
McDonald, M.S. (2003). Photobiology of Higher Plants, p. 354, John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, England.Google Scholar
McQuoid, M.R., Godhe, A. & Nordberg, K. (2002). Eur. J. Phycol. 37, 191201.CrossRefGoogle Scholar
Merlis, T.M. & Schneider, T. (2010). J. Adv. Model. Earth Syst. 2(Art. 13), 17.CrossRefGoogle Scholar
Milo, R. (2009). Photosyn. Res. 101, 59.CrossRefGoogle Scholar
Mizushima, K. & Matsuoka, K. (2004). Phycol. Res. 52, 408.CrossRefGoogle Scholar
Moczydlowska, M. (2008). Precambrian Res. 167, 1.CrossRefGoogle Scholar
Park, Y., Chow, W.S. & Anderson, J.M. (1996). Plant Physiol. 11(1), 867875.CrossRefGoogle Scholar
Peale, S.J. (1988). The rotational dynamics of Mercury and the state of its core. In Mercury, ed. Vilas, F., Chapman, C.R. & Matthews, M.S., pp. 461493. University of Arizona Press, Tucson.Google Scholar
Prockter, L. (2005). Ice in the Solar System. Volume 26. Johns Hopkins APL Technical Digest. Retrieved 2009–07–27.Google Scholar
Puxley, P., Hippel, T., Takamiya, M. & Volk, K. (2008). Definition of an Astronomical Source in the ITC, Gemini Observatory. http://www.gemini.edu/nearirresources?q=node/10257.Google Scholar
Raven, J.A. (1997). Limnol. Oceanogr. 42, 198205.CrossRefGoogle Scholar
Raven, J.A. (2011). Physiol. Plant 142, 87104.CrossRefGoogle Scholar
Raven, J.A. (2009a). Funct. Plant Biol. 36, 505–51.CrossRefGoogle Scholar
Raven, J.A., Beardall, J., Flynn, K.J. & Maberly, S.C. (2009b). J. Exp. Bot. 60, 39753987.CrossRefGoogle Scholar
Raven, J.A. & Cockell, C.S. (2006). Astrobiology 6, 668–67.CrossRefGoogle Scholar
Raven, J.A., KÏblerand, J.E. & Beardall, J. (2000). Mar. Biol. Assoc. UK 80, 125.CrossRefGoogle Scholar
Raymond, S.N., Kokubo, E., Morbidelli, A., Morishima, R., Walsh, K.J., (2014). Terrestrial Planet Formation at Home and Abroad, in Protostars and Protoplanets VI, ed. Beuther, H., Klessen, R., Dullemond, C., Henning, Th., University of Arizona Press, Tucson.Google Scholar
Ribeiro, S., Berge, T., Lundholm, N., Andersen, T.J., Abrantes, F., Ellegaard, M. (2011). Nat. Commun. 2, 311.CrossRefGoogle Scholar
Royer, D.L., Osborne, C.P. & Beerling, D.J. (2003). Nature 424, 60.CrossRefGoogle Scholar
Ryves, B.D., Jewson, D.A., Sturm, M., Battarbee, R.N., Flower, R.J., Mackay, A.W. & Granin, N.G. (2003). Limnol. Oceanogr. 48, 1643.CrossRefGoogle Scholar
Selsis, F., Kasting, J.F., Levrard, B., Paillet, J., Ribas, I. & Delfosse, X. (2007). Astron. Astrophys. 476, 1373.CrossRefGoogle Scholar
Silvertown, J. (2004). Trends Ecol. Evol. 19, 605611.CrossRefGoogle Scholar
Spiegel, D.S., Raymond, S.N., Dressing, C.D., Scharf, C.A. & Mitchell, J.L. (2010). Astrophys. J. 721, 1308.CrossRefGoogle Scholar
Stomp, M., Huisman, J., Stal, L.J. & Matthijs, H.C.P. (2007). ISME J. 1, 271–28.Google Scholar
Thomas, B. & Vince-Prue, D. (1997). Photoperiodism in Plants. Academic Press, San Diego, CA.Google Scholar
Williams, D.M. & Pollard, D. (2002). Int. J. Astrobiol. 1, 61.CrossRefGoogle Scholar
Wolstencroft, R.D. & Raven, J.A. (2002). Icarus 157, 535.CrossRefGoogle Scholar
Yang, J., Cowan, N.B. & Abbot, D.S. (2013). Astrophys. J. 771, L45.CrossRefGoogle Scholar
10
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Photosynthetic potential of planets in 3 : 2 spin–orbit resonances
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Photosynthetic potential of planets in 3 : 2 spin–orbit resonances
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Photosynthetic potential of planets in 3 : 2 spin–orbit resonances
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *