Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-pc5cw Total loading time: 0.14 Render date: 2021-09-25T21:42:50.082Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

DNA signature of thermophilic bacteria from the aged accretion ice of Lake Vostok, Antarctica: implications for searching for life in extreme icy environments

Published online by Cambridge University Press:  05 August 2004

Sergey A. Bulat
Affiliation:
Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Leningrad region, Gatchina 188300, Russia e-mail: bulat@omrb.pnpi.spb.ru Plasticité et Expression des Génomes Microbiens, UJF, CNRS, Grenoble 38041, France e-mail: sergey.bulat@ujf-grenoble.fr Laboratoire de Glaciologie et de Géophysique de l'Environnement, CNRS, BP96, Saint Martin d'Hères 38402, France
Irina A. Alekhina
Affiliation:
Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Leningrad region, Gatchina 188300, Russia e-mail: bulat@omrb.pnpi.spb.ru
Michel Blot
Affiliation:
Plasticité et Expression des Génomes Microbiens, UJF, CNRS, Grenoble 38041, France e-mail: sergey.bulat@ujf-grenoble.fr
Jean-Robert Petit
Affiliation:
Laboratoire de Glaciologie et de Géophysique de l'Environnement, CNRS, BP96, Saint Martin d'Hères 38402, France
Martine de Angelis
Affiliation:
Laboratoire de Glaciologie et de Géophysique de l'Environnement, CNRS, BP96, Saint Martin d'Hères 38402, France
Dietmar Wagenbach
Affiliation:
Institut für Umweltphysik, INF 229 Heidelberg 69120, Germany
Vladimir Ya. Lipenkov
Affiliation:
Arctic and Antarctic Research Institute, 38 Bering Str., St. Petersburg 199397, Russia
Lada P. Vasilyeva
Affiliation:
Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Leningrad region, Gatchina 188300, Russia e-mail: bulat@omrb.pnpi.spb.ru
Dominika M. Wloch
Affiliation:
Plasticité et Expression des Génomes Microbiens, UJF, CNRS, Grenoble 38041, France e-mail: sergey.bulat@ujf-grenoble.fr
Dominique Raynaud
Affiliation:
Laboratoire de Glaciologie et de Géophysique de l'Environnement, CNRS, BP96, Saint Martin d'Hères 38402, France
Valery V. Lukin
Affiliation:
Arctic and Antarctic Research Institute, 38 Bering Str., St. Petersburg 199397, Russia
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have used 16S ribosomal genes to estimate the bacterial contents of Lake Vostok accretion ice samples at 3551 m and 3607 m, both containing sediment inclusions and formed 20000–15000 yr ago. Decontamination proved to be a critical issue, and we used stringent ice chemistry-based procedures and comprehensive biological controls in order to restrain contamination. As a result, up to now we have only recognized one 16S rDNA bacterial phylotype with confident relevance to the lake environment. It was found in one sample at 3607 m depth and represents the extant thermophilic facultative chemolithoautotroph Hydrogenophilus thermoluteolus of beta-Proteobacteria, and until now had only been found in hot springs. No confident findings were detected in the sample at 3551 m, and all other phylotypes revealed (a total of 16 phylotypes, 336 clones including controls) are presumed to be contaminants. It seems that the Lake Vostok accretion ice is actually microbe-free, indicating that the water body should also be hosting a highly sparse life. The message of thermophilic bacteria suggests that a geothermal system exists beneath the cold water body of Lake Vostok, what is supported by the geological setting, the long-term seismotectonic evidence from 4He degassing and the ‘18O shift’ of the Vostok accretion ice. The seismotectonic activity that seems to operate in deep faults beneath the lake could sustain thermophilic chemolithoautotrophic microbial communities. Such a primary production scenario for Lake Vostok may have relevance for icy planets and the approaches used for estimating microbial contents in accretion ice are clearly relevant for searching for extraterrestrial life.

Type
Research Article
Copyright
2004 Cambridge University Press
You have Access
69
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

DNA signature of thermophilic bacteria from the aged accretion ice of Lake Vostok, Antarctica: implications for searching for life in extreme icy environments
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

DNA signature of thermophilic bacteria from the aged accretion ice of Lake Vostok, Antarctica: implications for searching for life in extreme icy environments
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

DNA signature of thermophilic bacteria from the aged accretion ice of Lake Vostok, Antarctica: implications for searching for life in extreme icy environments
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *