Skip to main content

Oxaloacetate-to-malate conversion by mineral photoelectrochemistry: implications for the viability of the reductive tricarboxylic acid cycle in prebiotic chemistry

  • Marcelo I. Guzman (a1) and Scot T. Martin (a1)

The carboxylic acids produced by the reductive tricarboxylic acid (rTCA) cycle are possibly a biosynthetic core of initial life, although several steps such as the reductive kinetics of oxaloacetate (OAA) to malate (MA) are problematic by conventional chemical routes. In this context, we studied the kinetics of this reaction as promoted by ZnS mineral photoelectrochemistry. The quantum efficiency φMA of MA production from the photoelectrochemical reduction of OAA followed φMA=0.13 [OAA] (2.1×10−3+[OAA])−1 and was independent of temperature (5 to 50°C). To evaluate the importance of this forward rate under a prebiotic scenario, we also studied the temperature-dependent rate of the backward thermal decarboxylation of OAA to pyruvate (PA), which followed an Arrhenius behavior as log (k−2)=11.74–4956/T, where k−2 is in units of s−1. These measured rates were employed in conjunction with the indirectly estimated carboxylation rate of PA to OAA to assess the possible importance of mineral photoelectrochemistry in the conversion of OAA to MA under several scenarios of prebiotic conditions on early Earth. As an example, our analysis shows that there is 90% efficiency with a forward velocity of 3 yr/cycle for the OAA→MA step of the rTCA cycle at 280 K. Efficiency and velocity both decrease for increasing temperature. These results suggest high viability for mineral photoelectrochemistry as an enzyme-free engine to drive the rTCA cycle through the early aeons of early Earth, at least for the investigated OAA→MA step.

Hide All
Aoshima, M. (2007). Appl. Microbiol. Biotechnol. 75, 249255.
Cockell, C.S. (2000). Planet. Space Sci. 48, 203214.
Covey, W.D. & Leussing, D.L. (1974). J. Am. Chem. Soc. 96, 38603866.
Emly, E. & Leussing, D.L. (1981). J. Am. Chem. Soc. 103, 628634.
Gelles, E. (1956). J. Chem. Soc., 47364739.
Gelles, E. & Hay, R.W. (1958) J. Chem. Soc., 36733683.
Gelles, E. & Salama, A. (1958a). J. Chem. Soc., 36833688.
Gelles, E. & Salama, A. (1958b). J. Chem. Soc., 36893693.
Guthrie, J.P. (2002). Bioorganic Chem. 30, 3252.
Hoffmann, M.R., Martin, S.T., Choi, W. & Bahnemann, D.W. (1995). Chem. Rev. 95, 6996.
Holland, H.D. (1984). The Chemical Evolution of the Atmosphere and Oceans, pp. 105107. Princeton University Press, Princeton, NJ.
Kasting, J.F. (1993). Science 259, 920926.
Kishore, N., Tewari, Y.B. & Goldberg, R.N. (1998). J. Chem. Thermodynam. 30, 13731384.
Kokesh, F.C. (1976). J. Org. Chem. 41, 35933599.
Kuhn, H.J., Braslavsky, S.E. & Schmidt, R. (2004). Pure Appl. Chem. 76, 21052146.
Lide, D.R. (2008). Solubility of carbon dioxide in water at various temperatures and pressures. In CRC Handbook of Chemistry and Physics, 88th edn, pp. 884. CRC Press/Taylor and Francis, Boca Raton, Fl, USA.
Miller, S.L. & Smith-Magowan, D. (1990). J. Phys. Chem. Ref. Data 19, 10491073.
Morowitz, H.J., Kostelnik, J.D., Yang, J. & Cody, G.D. (2000) Proc. Natl Acad. Sci. USA 97, 77047708.
Morse, J.W. & Mackenzie, F.T. (1998). Aquat. Geochem. 4, 301319.
Orgel, L.E. (2000). Proc. Natl Acad. Sci. USA 97, 12 50312 507.
Pedersen, K.J. (1952). Acta Chem. Scand. 6, 285303.
Pogson, C.I. & Wolfe, R.G. (1972). Biochem. Biophys. Res. Commun. 46, 1048.
Ross, D.S. (2007). Orig. Life Evol. Biosph. 37, 6165.
Schuster, P. (2000). PNAS, 97, pp. 76787680.
Smith, E. & Morowitz, H.J. (2004). Proc. Natl Acad. Sci. USA 101, 13 16813 173.
Speck, J.F. (1949). J. Biolog. Chem. 178, 315324.
Tarasov, V.G., Gebruk, A.V., Mironov, A.N. & Moskalev, L.I. (2005). Chem. Geol. 224, 539.
Thauer, R.K. (2007). Science 318, 17321733.
Tsai, S.J. & Leussing, D.L. (1987). Inorg. Chem. 26, 26202629.
Wachtershauser, G. (1990). Proc. Natl Acad. Sci. USA 87, 200204.
Wachtershauser, G. (1993). Pure Appl. Chem. 65, 13431348.
Wood, H.G., Davis, J.J. & Lochmuller, H. (1966). J. Biol. Chem. 241, 56925704.
Zhang, X.V., Ellery, S.P., Friend, C.M., Holland, H.D., Michel, F.M., Schoonen, M.A.A. & Martin, S.T. (2007). J. Photochem. Photobiol. A: Chem. 185, 301311.
Zhang, X.V. & Martin, S.T. (2006). J. Am. Chem. Soc. 128, 16 03216 033.
Zhang, X.V., Martin, S.T., Friend, C.M., Schoonen, M.A.A. & Holland, H.D. (2004). J. Am. Chem. Soc. 126, 11 24711 253.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed