Skip to main content
×
×
Home

The PUR Experiment on the EXPOSE-R facility: biological dosimetry of solar extraterrestrial UV radiation

  • A. Bérces (a1), M. Egyeki (a1), A. Fekete (a1), G. Horneck (a2), G. Kovács (a3), C. Panitz (a2) and Gy. Rontó (a4)...
Abstract

The aim of our experiment Phage and Uracil Response was to extend the use of bacteriophage T7 and uracil biological dosimeters for measuring the biologically effective ultraviolet (UV) dose in the harsh extraterrestrial radiation conditions. The biological detectors were exposed in vacuum-tightly cases in the European Space Agency (ESA) astrobiological exposure facility attached to the external platform of Zvezda (EXPOSE-R). EXPOSE-R took off to the International Space Station (ISS) in November 2008 and was installed on the External platform of the Russian module Zvezda of the ISS in March 2009. Our goal was to determine the dose–effect relation for the formation of photoproducts (i.e. damage to phage DNA and uracil, respectively). The extraterrestrial solar UV radiation ranges over the whole spectrum from vacuum-UV (λ<200 nm) to UVA (315 nm<λ<400 nm), which causes photolesions (photoproducts) in the nucleic acids/their components either by photoionization or excitation. However, these wavelengths cause not only photolesions but in a wavelength-dependent efficiency the reversion of some photolesions, too. Our biological detectors measured in situ conditions the resultant of both reactions induced by the extraterrestrial UV radiation. From this aspect the role of the photoreversion in the extension of the biological UV dosimetry are discussed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The PUR Experiment on the EXPOSE-R facility: biological dosimetry of solar extraterrestrial UV radiation
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The PUR Experiment on the EXPOSE-R facility: biological dosimetry of solar extraterrestrial UV radiation
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The PUR Experiment on the EXPOSE-R facility: biological dosimetry of solar extraterrestrial UV radiation
      Available formats
      ×
Copyright
Corresponding author
e-mail: attila.berces@med.semmelweis-univ.hu
References
Hide All
Bérces, A., Fekete, A., Gáspár, S., Gróf, P., Rettberg, P., Horneck, G. & Rontó, Gy. (1999). Biological UV dosimeters in the assessment of the biological hazard from the environmental radiation. J. Photochem. Phototobiol. B.: Biol. 53, 3643.
Berger, T., Hajek, M., Bilski, P., Vanhavere, F., Horwacik, T., Körner, C. & Reitz, G. (2012). Measurements of the dose due to ionizing radiation within the EXPOSE-E experiment applying passive radiation detectors. Astrobiology 12, 387392.
Berger, T., Hajek, M., Bilski, P. & Reitz, G. (2014). Int. J. Astrobiol. (in press).
Blackburn, G.M., Gait, M.J., Loakes, D. & Williams, D.M. (2006). Nucleic Acids in Chemistry and Biology, 3rd edn. RSC Publishing, The Royal Society of Chemistry, Cambridge, UK.
Cadet, J., Sage, E. & Douki, T. (2005). Ultraviolet mediated damage to cellular DNA. Mut. Res. 571, 317.
Douki, T., Zalizniak, T. & Cadet, J. (1997). Far-UV-induced dimeric photoproducts in short oligonucleotides: sequence effects. Photochem. Photobiol. 66, 171179.
Douki, T., Court, M., Sauvaigo, S., Odin, F. & Cadet, J. (2000). Formation of the main UV-induced thymine dimeric lesions within isolated and cellular DNA as measured by high performance liquid chromatography-tandem mass spectrometry. J. Biol. Chem. 275, 1167811685.
Fekete, A., Vink, A.A., Gáspár, S., Bérces, A., Módos, K., Rontó, Gy. & Roza, L. (1998). Assessment of the effects of various UV sources on inactivation and photoproduct induction in phage T7 dosimeter. Photochem. Photobiol. 68, 527532.
Fekete, A., Módos, K., Hegedüs, M., Kovács, G., Rontó, Gy., Péter, Á., Lammer, H. & Panitz, C. (2005). DNA damage under simulated extraterrestrial conditions in bacteriophage T7. Adv. Space Res. 36, 303310.
Fisher, G.J. & Johns, H.E. (1976). Pyrimidine photodimers. In Photochemistry and Photobiology of Nucleic Acids, ed. Wang, S.Y., pp. 226289. Academic Press, New York.
Fridlund, M. et al. (2010). The search for worlds like our own. Astrobiology 10, 517.
Goldschmidt, G., Kovaliczky, É., Szabó, J., Rontó, Gy. & Bérces, A. (2012 ). In situ biodosimetric experiment for space applications. Orig. Life Evol. Biosph. 42, 247252.
Griffin, W.D. (2013). The quest for extraterrestrial life. What about the viruses? Astrobiology 13, 774783.
Gróf, P., Gáspár, S. & Rontó, Gy. (1996). Use of uracil thin layer for measuring biologically effective UV dose. Photochem. Photobiol. 64, 800806.
Grósz, V., Gorócz, V., Futó, A., Vatali, D., Szabó, J. & Bérces, A. (2013). Continuous measurement of the biological effects of stratospheric UV radiation. –BIODOS Experiment BEXUS -15. In Proc. 21st ESA Symposium on European Rocket and Ballon Programmes and Related Research (ESA SP-721), pp. 315319.
Hegedüs, M., Módos, K., Rontó, Gy. & Fekete, A. (2003). Validation of phage T7 biological dosimeter by quantitative polymerase chain reaction using short and long segments of phage T7 DNA. Photochem. Photobiol. 78, 213220.
Hieda, K., Suzuki, K., Hirono, T., Suzuki, M. & Furuzawa, Y. (1994). Single- and double-strand breaks in pBR322 DNA by vacuum-UV from 8.3 to 20.7 eV. J. Radiat. Res. 35, 104111.
Horneck, G., Bücker, H., Reitz, G., Reinhardt, H., Dose, K., Martens, K.D., Menningmann, H.D. & Weber, P. (1984). Microorganisms in the space environment. Science 225, 226228.
Horneck, G., Eschweiler, U., Reitz, G., Wehner, J., Willimek, R. & Strauch, K. (1995). Biological responses to space: results of the experiment, ‘Exobiological Unit’ of ERA on EURECA I. Adv. Space Res. 16, 105118.
Horneck, G. et al. (1999). Biological experiments on the EXPOSE facility of the International Space Station. ESA SP-433, 459468.
Horneck, G., Rettberg, P., Reitz, G., Wehner, J., Eschweiler, U., Strauch, K., Panitz, C., Starke, V. & Baumstark-Kahn, C. (2001). Protection of bacterial spores in space, a contribution to the discussion on panspermia. Orig. Life Evol. Biosph. 31, 527547.
Kerékgyártó, T., Gróf, P. & Rontó, G. (1997). Production and basic application of Uracil dosimeters for measuring the biologically effective UV dose. Centr. Eur. J. Occup. Environ. Med. 3, 143152.
Kovács, G., Fekete, A., Bérces, A. & Rontó, Gy. (2007). The effect of the short wavelength ultraviolet radiation. An extension of biological dosimetry to the UV-C range. J. Photochem. Photobiol. B:. Biol. 88, 7788.
Lindberg, C. & Horneck, G. (1991). Action spectra for survival and spore photoproduct formation of B. subtilis irradiated with short-wavelength (200–300 nm) UV at atmospheric pressure and vacuo. J. Photochem. Photobiol. B: Biol. 11, 6980.
Munakata, N., Saito, M. & Hieda, K. (1991). Inactivation action spectra of Bacillus subtilis spores in extended ultraviolet wavelengths (50–300 nm) obtained with synchrotron radiation. Photochem. Photobiol. 54, 761768.
Munakata, N., Kazadzis, S., Bais, A.F., Hied, K., Rontó, Gy., Rettberg, P. & Horneck, G. (2000). Comparisons of spore dosimetry and spectral photometry of Solar-UV radiation at four sites in Japan and Europe. Photochem. Photobiol. 72, 739745.
Nicholson, W.L. (2009). Ancient micronauts: interplanetary transport of microbes by cosmic impacts. Trends Microbiol. 17, 243250.
Nicholson, W.L. et al. (2011). The O/OREOS Mission: first science data from the space environment survivability of living organisms (SELSO) payload. Astrobiology 11, 951958.
Panitz, C., Horneck, G., Rabbow, E., Rettberg, P., Moeller, R., Cadet, J., Douki, T. & Reitz, G. (2014). The SPORES experiment of the EXPOSE-R mission: Bacillus subtilis spores in artificial meteorites. Int. J. Astrobiol. (in press).
Rabbow, E., Rettberg, P., Panitz, C., Drescher, J., Horneck, G. & Reitz, G. (2005). SSIOUX – Space simulation for investigating organics, evolution and exobiology. Adv. Space Res. 36, 297302.
Rabbow, E., Horneck, G., Rettberg, P., Schott, J.U., Panitz, C., Hatton, J., Dettmann, J., Demets, R. & Reitz, G. (2009). EXPOSE, an astrobiological exposure facility on the International Space Station – from proposal to flight. Orig. Life Evol. Biosph. 39, 581598.
Rabbow, E. et al. (2014). The Astrobiological Mission EXPOSE-R on board of the International Space Station. Int. J. Astrobiol. (in press).
RedShift (2011). Design and Engineering BVBA, EXPOSE-R Simulation Results.
Rontó, Gy., Gáspár, S., Gróf, P., Bérces, A. & Gugolya, Z. (1994). Ultrasviolet dosimetry in outdoor measurements based on bacteriophage T7 as a biosensor. Photochem. Photobiol. 59, 209214.
Rontó, Gy., Gáspár, S., Fekete, A., Kerékgyártó, T., Bérces, A. & Gróf, P. (2002). Stability of nucleic acid under the effect of UV radiation. Adv. Space Res. 30, 15331538.
Rontó, Gy., Bérces, A., Fekete, A., Kovács, G., Gróf, P. & Lammer, H. (2004). Biological UV dosimeters in simulated space conditions. Adv. Space Res. 33, 13021305.
Setlow, R.B. & Setlow, J.K. (1965). The proper use of short-wavelength reversal as a criterion of the importance of pyrimidine dimers in biological inactivation. Photochem. Photobiol. 4, 939940.
Stedman, K. & Blumberg, B. (2008). Astrovirology. Astrobiology 8, 316318.
Weber, P. & Greenberg, J.M. (1985). Can spores survive in interstellar space? Nature 316, 403404.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed