Skip to main content

Results on the survival of cryptobiotic cyanobacteria samples after exposure to Mars-like environmental conditions

  • J. -P. de Vera (a1), S. Dulai (a2), A. Kereszturi (a3) (a4), L. Koncz (a1), A. Lorek (a1), D. Mohlmann (a1), M. Marschall (a1) (a2) and T. Pocs (a2)...

Tests on cyanobacteria communities embedded in cryptobiotic crusts collected in hot and cold deserts on Earth were performed under Mars-like conditions. The simulations were realized as a survey, to find the best samples for future research. During the tests organisms have to resist Mars-like conditions such as atmospheric composition, pressure, variable humidity (saturated and dry conditions) and partly strong UV irradiation. Organisms were tested within their original habitat inside the crust. Nearly half of the cryptobiotic samples from various sites showed survival of a substantial part of their coexisting organisms. The survival in general depended more on the nature of the original habitat and type of the sample than on the different conditions they were exposed to. The best survival was observed in samples from United Arab Emirates (Jebel Ali, 25 km SW of Dubai town) and from Western Australia (near the South edge of Lake Barley), by taxa: Tolypothrix byssoidea, Gloeocapsopsis pleurocapsoides, Nostoc microscopicum, Leptolyngbya or Symploca sp. At both places in salty desert areas members of the Chenopodiaceae family dominated among the higher plants and in the cryptobiotic crust cyanobacterial taxa Tolypothrix was dominant. These organisms were all living in salty locations with dry conditions most of the year. Among them Tolypothrix, Gloeocapsopsis and Symploca sp. were tested in Mars simulation chambers for the first time. The results suggest that extremophiles should be tested with taken into account the context of their original microenvironment, and also the importance to analyse communities of microbes beside single organisms.

Corresponding author
Hide All
Abrevaya, X.C., Adamo, H.P., Corton, N.E. & Mauas, P.J.D. (2008). The UV limits of life on extrasolar planets: an experiment with halophile archaea bacteria at different UV doses. Bol. Asoc. Argentina Astron. 51, 36.
Abrevaya, X.C., Paulino-Lima, I.G., Galante, D., Rodrigues, F., Mauas, P.J.D., Corton, E. & Santos Lage, C.A. (2011). Comparative survival analysis of Deinococcus radiodurans and the Haloarchaea Natrialba magadii and Haloferax volcanii exposed to vacuum ultraviolet irradiation. Astrobiology 11, 10341040.
Allen, C.C., Wainwright, N.R., Grasby, S.E. & Harvey, R.P. (2003). Life in the ice. In 6th International Conference on Mars, Pasadena, USA, abstract 3138.
Altheide, T., Chevrier, V., Nicholson, C. & Denson, J. (2009). Experimental investigation of the stability and evaporation of sulfate and chloride brines on Mars. Earth Planet. Sci. Lett. (Netherlands) 282, 6978.
Arai, M., Sato, S., Ohmori, M., Tomita-Yokotani, K., Hashimoto, H. & Yamashita, M. (2008). Martian regolith simulant after exposure to vacuum. In 37th COSPAR Scientific Assembly, Montreal, Canada, p. 113.
Baxter, B.K., Eddington, B., Riddle, M.R., Webster, T.N. & Avery, B.J. (2007). Great Salt Lake halophilic microorganisms as models for astrobiology: evidence for desiccation tolerance and ultraviolet irradiation resistance. In Proc. of the SPIE Conference 6694 Instruments, Methods, and Missions for Astrobiology X. ed. Hoover, R.B., Levin, G.V., Rozanov, A.Y. & Davies, P.C.W., p. 669415.
Belnap, J., Büdel, B. & Lange, O.I. (2001) Biological soil crusts: characteristics and distribution. In Biological Soil Crust: Structure, Function and Management, ed. Belnap, J. & Lange, O.J., pp. 330. Ecological Studies 15, Springer, Berlin.
Campbell, S.E. (1979). Soil stabilization by a prokaryotic desert crust: implications for Precambrian land biota. Orig. Life Evol. Biosph. (Netherlands) 9, 335348.
Cockell, C.S. (2002). The ultraviolet radiation environment of earth and Mars: past and present. In Astrobiology: the Quest for the Conditions of Life, ed. Horneck, G. & Baumstark-Khan, C., pp. 219232. Springer, Berlin.
Cockell, C.S., Balme, M., Bridges, J.C., Davila, A. & Schwenzer, S.P. (2012). Uninhabited habitats on Mars. Icarus (USA) 217, 184193.
Corinna, P., Rabbow, E., Rettberg, P., Kloss, M., Reitz, G. & Horneck, G. (2010). Planetary and Space Simulation Facilities (PSI) at DLR. Geophysical Research Abstracts 12, EGU2010-15602.
de la Torre, J.R., Goebel, B.M., Friedmann, E.I. & Pace, N.R. (2003). Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys. Antarctica. Appl. Environ. Microbiol. 69, 38583867.
de la Vega, U.P., Rettberg, P. & Reitz, G. (2007). Simulation of the environmental climate conditions on Martian surface and its effect on Deinococcus radiodurans. Adv. Space Res. 40, 16721677.
de Vera, J.-P., Horneck, G., Rettberg, P. & Ott, S. (2002). The potential of the lichen symbiosis to cope with extreme conditions of outer space – I. Influence of UV radiation and space vacuum on the vitality of lichen symbiosis and germination capacity. Int. J. Astrobiol. 1, 285293.
Dor, I. & Danin, A. (2001). Life strategies of Microcoleus vaginatus: a crust-forming cyanophyte in desert soils. Nova Hewigia, Beiheft 123, 317339.
Eldridge, D.J. & Greene, R.S.B. (1994). Microbial soil crusts: a review of their roles in soil and ecological processes in the rangelands of Australia. Aust. J. Soil Res. 32, 389415.
Foster, J.S. & Mobberley, J.M. (2010). Microbial and functional gene diversity in the thrombolitic mats of Highborne Cay, Bahamas. In Astrobiology Science Conference, abstract 5083.
Friedmann, I. (1986). The Antarctic cold desert and the search for traces of life on Mars. Adv. Space Res. 6, 265268.
Gibson, E.K., McKay, D.S., Thomas-Keprta, K.L., Clemett, S.J. & Wentworth, S.J. (2009). Development of life on early Mars. In 40th Lunar and Planetary Science Conference, The Woodlands, Texas, USA, abstract 1175.
Glansdorff, N., Xu, Y. & Labedan, B. (2008). The Last Universal Common Ancestor: emergence, constitution and genetic legacy of an elusive forerunner. Biology Direct 3, 29.
Hoover, R.B., Pikuta, E.V., Townsend, A., Anthony, J., Guisler, M., McDaniel, J., Bej, A. & Storrie-Lombardi, M. (2008). Microbial extremophiles from the 2008 Schirmacher Oasis expedition: preliminary results. In Proc. of SPIE Instruments, Methods, and Missions for Astrobiology XI(7097), ed. Hoover, R.B., Levin, G.V., Rozanov, A.Y. & Davies, P.C., doi: 10.1117/12.801018.
Jänchen, J., Feyh, N., Mohlmann, D.T.F. & Wildau, T.H. (2010). The hydration and dehydration properties of hygroscopic chlorides and biofilms under Martian environmental conditions. In 41st Lunar and Planetary Science Conference, The Woodlands, Texas, USA, abstract 1244.
Kahn, R. (1985). The evolution of CO2 on Mars. Icarus (USA) 62, 175190.
Kieffer, H.H., Titus, T.N., Mullins, K.F. & Christensen, P.R. (2000). Mars south polar spring and summer behavior observed by TES: seasonal cap evolution controlled by frost grain size. J. Geophys. Res. 105(E4), 96539700.
Kochan, H., Feibig, W., Cretschmer, M., Willnecker, R., Gerasimov, M.V., Speth, B., Kohler, U. & Weckesser, F. (1996). The new planetary simulation facility of DLR – construction, operation, application. In Proc. 27th Lunar and Planetary Science Conf., Houston, Texas, USA, p. 675.
Kochan, H., Feibig, W. & Mohlmann, D. (2000). The Planetary Simulation Facility of DLR – Design, Operational Performance, Perspectives. Near-Earth Asteroid Sample Return Workshop, Houston, Texas, USA, abstract 8011.
Krumbein, W.E., Gorbushina, A.A. & Holtkamp-Tacken, E. (2004). Hypersaline microbial systems of Sabkhas: examples of life's survival in ‘Extreme’ conditions. Astrobiology 4, 450459.
Maturilli, A., Helbert, J., Roush, T.L. & D'Amore, M. (2012). Influence of moisture content on albedo changes of JSC Mars-1 Martian simulant: a lesson for HiRISE? In 43rd Lunar and Planetary Science Conference, The Woodlands, Texas, USA, abstract 1406.
Mohlmann, D. (2004). Water in the upper Martian surface at mid- and low-latitudes: Presence, state, and consequences. Icarus (USA) 168, 318323.
Mohlmann, D. (2009). Are nanometric films of liquid undercooled interfacial water bio-relevant? Cryobiology 58, 256261.
Mohlmann, D. (2010). The three types of liquid water in the surface of present Mars. Int. J. Astrobiol. 9, 4549.
Mohlmann, D. & Thomsen, K. (2011). Properties of cryobrines on Mars. Icarus (USA) 212, 123130.
Mohlmann, D.T., Wernecke, R. & Schwanke, V. (2006). The Mars-Simulation-Facility at DLR-Berlin. In Proc. European Planetary Science Congress, Berlin, Germany, p. 284.
Olsson-Francis, K. & Cockell, C.S. (2010). Use of cyanobacteria for in situ resource use in planetary exploration. In Astrobiology Science Conference, League City, Texas, USA, abstract 5078.
Oren, A. & Seckbach, J. (2001). Oxyenic photosynthetic microorganism in extreme environments. Nova Hedwigia Beiheift 123, 1331.
Panitz, C., Rabbow, E., Rettberg, P., Kloss, M., Reitz, G. & Horneck, G. (2010). Planetary and Space Simulation Facilities (PSI) Ψ at DLR. In European Planetary Science Conference, Rome, Italy, abstract EPSC2010-521.
Pocs, T. (2009). Cyanobacterial crust types, as strategies for survival in extreme habitats. Acta Botanica Hungarica 51(1–2), 147178.
Pocs, T., Horvath, A., Ganti, T., Bérczi, Sz. & Szathmary, E. (2003). On the basis of terrestrial analogue site studies are the dark dune spots remnants of the Crypto-Biotic-Crust of Mars? In 38th Vernadsky/Brown Microsymposium on Comparative Planetology, Moscow, Russia, abstract M8079.
Pócs, T., Horváth, A., Gánti, T., Bérczi, Sz. & Szathmáry, E. (2004). Possible Crypto-Biotic-Crust on Mars? In Proc. of the III European Workshop on Exo-Astrobiology. Mars: The search for Life, Madrid, Spain, ESA SP-545, pp. 265266.
Potts, M. & Friedmann, E.I. (1981). Effects of water stress on cryptoendolithic Cyanobacteria from hot desert rocks. Arch. Microbiol. 130, 267271.
Schmidt, S.K., Nemergut, D.R., Miller, A.E., Freeman, K.R., King, A.J. & Seimon, A. (2009). Microbial activity and diversity during extreme freeze – thaw cycles in periglacial soils, 5400 m elevation, Cordillera Vilcanota, Peru. Extremophiles 13, 807816-.
Seckbach, J. & Oren, A. (ed.) (2010). Microbial Mats in Terrigenous Clastics: the Challenge of Identification in the Rock Record. Cellular Origin, Life in Extreme Habitats and Astrobiology. Springer, Dordrecht.
Sorrels, C.M., Proteau, P.J. & Gerwick, W.H. (2009). Organization, evolution, and expression analysis of the biosynthetic gene cluster for scytonemin, a cyanobacterial UV-absorbing pigment. Appl. Environ. Microbiol. 75(14), 48614869.
Stan-Lotter, H., Legat, A., Fendrihan, S., Leuko, S., Gruber, C., Radax, C., Pfaffenhuemer, M., Weidler, G. & Rittmann, S. (2004). Haloarchaeal survival over geological times and the detection of extraterrestrial halite – implications for the search for life on Mars. In Proc. 3rd European Workshop on Exo-Astrobiology, Madrid, Spain, ed. Harris, R.A. & Ouwehand, L., pp. 6366. ESA SP-545, Noordwijk, Netherlands.
Stojanovic, D.B., Fojkar, O.O., Drobac-Cik, A.V., Cajko, K.O., Dulic, T.I. & Svircev, Z-B. (2008). Extremophiles — link between Earth and Astrobiology. Proc. Nat. Sci, Matica Srpska Novi Sad 114, 516.
Strandling, D.A., Thygerson, T., Walker, J.A., Smith, B.N., Hansen, L.D., Criddle, R.S. & Pendleton, R.L. (2002). Cryptogamic crust metabolism in response to temperature, water vapor, and liquid water. Thermochemia Acta 394, 219225.
Theobald, D.L. (2010). A formal test of the theory of universal common ancestry. Nature 465, 219222.
Todd, P.E. & Irwin, A.U. (2000). Mortality of the Salt Marsh species Salicornia europaea and Atriplex prostrata (Chenopodiaceae) in response to inundation. Ohio J. Sci. 100(n2), 2427.
Tosca, N.J., Knoll, A.H. & McLennan, S.M. (2008). Water activity and the challenge for life on early Mars. Science 320, 1204.
Wang, G., Hu, C., Li, D., Zhang, D., Li, X., Chen, K. & Liu, Y. (2007). The response of antioxidant systems in Nostoc sphaeroides against UV-B radiation and the protective effects of exogenous antioxidants. Adv. Space Res. 39, 10341042.
Wang, G., Hao, Z., Huangm, Z., Chen, L., Li, X., Hu, C. & Liu, Y. (2010). Raman spectroscopic analysis of a desert cyanobacterium Nostoc sp. in response to UV-B radiation. Astrobiology 10, 783788.
Wynn-Williams, D.D. (2000). Cyanobacteria in desert: life at the limit? In The Ecology of Cyanobacteria, ed. Whitton, B.A. & Potts, M., pp. 341361. Springer, Dodrecht.
Zent, A.P., Haberle, R.M., Howard, C.H. & Jakosky, B.M. (1993). A coupled subsurface-boundary layer model of water on Mars. J. Geophys. Res. 98, 33193337.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 5
Total number of PDF views: 56 *
Loading metrics...

Abstract views

Total abstract views: 493 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th July 2018. This data will be updated every 24 hours.