Skip to main content Accessibility help

Swansong biospheres: refuges for life and novel microbial biospheres on terrestrial planets near the end of their habitable lifetimes

  • Jack T. O'Malley-James (a1), Jane S. Greaves (a1), John A. Raven (a2) and Charles S. Cockell (a3)


The future biosphere on Earth (as with its past) will be made up predominantly of unicellular micro-organisms. Unicellular life was probably present for at least 2.5 Gyr before multicellular life appeared and will likely be the only form of life capable of surviving on the planet in the far future, when the ageing Sun causes environmental conditions to become more hostile to more complex forms of life. Therefore, it is statistically more likely that habitable Earth-like exoplanets we discover will be at a stage in their habitable lifetime more conducive to supporting unicellular, rather than multicellular life. The end stage of habitability on Earth is the focus of this work. A simple, latitude-based climate model incorporating eccentricity and obliquity variations is used as a guide to the temperature evolution of the Earth over the next 3 Gyr. This allows inferences to be made about potential refuges for life, particularly in mountains and cold-trap (ice) caves and what forms of life could live in these environments. Results suggest that in high latitude regions, unicellular life could persist for up to 2.8 Gyr from present. This begins to answer the question of how the habitability of Earth will evolve at local scales alongside the Sun's main sequence evolution and, by extension, how the habitability of Earth-like planets would evolve over time with their own host stars.


Corresponding author


Hide All
Allan, R.P. (2012). The role of water vapour in Earth's energy flows. Surv. Geophys. 33, 557564.
Aráujo, M.B., Thuiller, W. & Pearson, R.G. (2006). Climate warming and the decline of amphibians and reptiles in Europe. J. Biogeogr. 33, 17121728.
Bach, W. & Edwards, K.J. (2003). Iron and sulfide oxidation within the basaltic ocean crust: Implications for chemolithoautotrophic microbial biomass production. Geochim. Cosmochim. Acta 67, 38713887.
Baker, E.T. & German, C.R. (2004). On the global distribution of hydrothermal vent fields. Geophys. Monogr. Ser. 148, 245266.
Bar-Even, A., Noor, E., Lewis, N.E. & Milo, R. (2010). Design and analysis of synthetic carbon fixation pathways. Proc. Natl Acad. Sci. U.S.A. 107, 88898894.
Bar-Even, A., Noor, E. & Mil, R. (2012). A survey of carbon fixation pathways through a quantitative lens. J. Exp. Bot. 63, 23252342.
Barnes, R., Mullins, K., Goldblatt, C., Meadows, V.S., Kasting, J.F. & Heller, R. (2012). Tidal Venuses: triggering a climate catastrophe via tidal heating. Preprint, arXiv:1203.5104v1.
Beatty, J.T., Oevrmann, J., Lince, M.T., Manske, A.K., Lang, A.S., Blankenship, R.E., Van Dover, C.L., Martinson, T.A. & Plumley, F.G. (2005). An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc. Natl. Acad. Sci. U.S.A. 102, 93069310.
Beaty, D. et al. (2006). Unpublished white paper, 76 p, posted June 2006 by the Mars Exploration Program Analysis Group (MEPAG) at
Bell, E.M. (2012). Life at Extremes: Environments, Organisms and Strategies for Survival. CABI, Oxfordshire, UK.
Birmingham, B.C. & Colman, B. (1979). Measurement of carbon dioxide compensation points of freshwater algae. Plant Physiol. 64, 892895.
Boer, G.J., Hamilton, K. & Zhu, W. (2004). Climate sensitivity and climate change under strong forcing. Climate Dyn. 24, 685700.
Bohlen, S.R. (1987). Pressure-temperature-time paths and a tectonic model for the evolution of granulites. J. Geol. 95, 617632.
Bonfils, X. et al. (2011). The HARPS search for southern extra-solar planets XXXI. The M-dwarf sample. Preprint, arXiv:1111.5019.
Bounama, C., Franck, S. & von Bloh, W. (2001). The fate of Earth's ocean. Hydrol. Earth Syst. Sci. 5, 569575.
Bowers, R.M., Lauber, C.L., Wiedinmyer, C., Hamady, M., Hallar, A.G., Fall, R., Knight, R. & Fierer, N. (2009). Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei. Appl. Environ. Microbiol. 75, 51215130.
Butterfield, N.J. (2000). Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the mesoproterozoic/neoproterozoic radiation of eukaryotes. Paleobiology 26, 386404.
Caldeira, C. & Kasting, J.F. (1992). The life span of the biosphere revisited. Nature 360, 721723.
Canfield, D.E. (2005). The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu. Rev. Earth Planet. Sci. 33, 136.
Catanzarite, J. & Shao, M. (2011). The occurrence rate of Earth-analog planets orbiting sun-like stars. Astrophys. J. 738, 151161.
Chivian, D. et al. (2008). Environmental genomics reveals a single-species ecosystem deep within earth. Science 322, 275278.
Clarke, A. & Rothery, P. (2008). Scaling of body temperature in mammals and birds. Funct. Ecol. 22, 5867.
Cockell, C.S. (2003). Impossible Extinction: Natural Catastrophes and the Supremacy of the Microbial World. Cambridge University Press, Cambridge, UK.
Dartnell, L. (2011). Biological constraints on habitability. Astron. Geophys. 52, 1.251.28.
DasSarma, S. & DasSarma, P. (2001). Halophiles. In Encyclopedia of Life Sciences, John Wiley & Sons, Ltd, Chichester.
Dillon, M.E., Wang, G. & Huey, R.B. (2010). Global metabolic impacts of recent climate warming. Nature 467, 704707.
Edwards, K.J., Becker, K. & Colwell, F. (2012). The deep, dark energy biosphere: intraterrestrial life on earth. Annu. Rev. Earth Planet. Sci. 40, 551568.
Engel, A.S., Porter, M.L., Kinkle, B.K. & Kane, T.C. (2001). Ecological assessment and geological significance of microbial communities from cesspool cave, Virginia. Geomicrobiol. J. 18, 259274.
Falkowski, P.G., Katz, M.E., Milligan, A.J., Fennel, K., Cramer, B.S., Aubrey, M.P., Berner, R.A., Novacek, M.J. & Zapol, W.M. (2005). The rise of oxygen over the past 205 million years and the evolution of large placental mammals. Science 309, 22022204.
Ferrera, I. & Reysenbach, A-L. (2007). Thermophiles. In Encyclopedia of Life Sciences, John Wiley & Sons, Ltd, Chichester.
Feulner, G. (2012). The faint young Sun problem. Rev. Geophys. 50: RG2006.
Field, C.B., Behrenfeld, M.J., Randerson, J.T. & Falkowski, P. (1998). Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237240.
Goldblatt, C. & Watson, J.A. (2012). The Runaway Greenhouse: implications for future climate change, geoengineering and planetary atmospheres. Preprint, arXiv:1201.1593v1.
Gough, D.O. (1981). Solar interior structure and luminosity variations. Solar Phys. 74, 2134.
Howarth, F.G. (1983). Ecology of cave arthropods. Annu. Rev. Etomol. 28, 365–289.
Irwin, L.N. & Schulze-Makuch, D. (2011). Cosmic Biology: How Life Could Evolve on Other Worlds? Edited by John Mason. Springer Science + Business Media, New York, NY, USA.
Kaltenegger, L., Traub, W.A. & Jucks, K.W. (2007). Evolution of an Earth-like planet. Astrophys. J. 658, 598616.
Kasting, J.F. (1988). Runaway and moist greenhouse atmospheres and the evolution of earth and Venus. Icarus 74, 472494.
Kasting, J.F. & Grinspoon, D.H. (1991). The faint young sun problem. In The Sun in Time, pp. 447462. University of Arizona Press, Tuscon, AZ.
Kemp, T.S. (2006). The origin of mammalian endothermy: a paradigm for the evolution of complex biological structure. Zool. J. Linnean Soc. 147, 473488.
Kieft, T.L. et al. (2005). Geochemically generated, energy-rich substrates and indigenous microorganisms in deep, ancient groundwater. Geomicrobiol. J. 22, 325335.
Kimura, H., Mori, K., Nashimoto, H., Hattori, S., Yamada, K., Koba, K., Yoshida, N. & Kato, K. (2010). Biomass production and energy source of thermophiles in a Japanese alkaline geothermal pool. Microbes Environ. 12, 480489.
Landis, G.A. (2001). Martian water: are there extant halobacteria on mars? Astrobiology 1, 161164.
Laskar, J. & Gastineau, M. (2009). Existence of collisional trajectories of Mercury, Mars and Venus with the Earth. Nature 459, 817819.
Laskar, J., Joutel, F. & Robutel, P. (1993). Stabilization of the Earth's obliquity by the Moon. Nature 361, 615617.
Laskar, J., Correia, A.C.M., Gastineau, M., Joutel, F., Levrard, B. & Robutel, P. (2004). Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170, 343364.
Leutscher, M., Jeannin, P.-Y. & Haeberli, W. (2005). Ice caves as an indicator of winter climate evolution: a case study from the Jura Mountains. Holocene 15, 982993.
Levenson, B.P. (2011). Planet temperatures with surface cooling parameterized. Adv. Space. Res. 47, 20442048.
Lin, L-H., Slater, G.F., Lollar, B.S., Lacrampe-Couloume, G. & Onstott, T.C. (2005). The yield and isotopic composition of radiolytic H2, a potential energy source for the deep subsurface biosphere. Geochim. Cosmochim. Acta 69, 893903.
Lin, L-H. et al. (2006). Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314, 479482.
Lineweaver, C.H. (2001). An estimate of the age distribution of terrestrial planets in the universe: quantifying metallicity as a selection effect. Icarus 151, 307313.
Lissauer, J.J., Barnes, J.W. & Chambers, J.E. (2012). Obliquity variations of a moonless Earth. Icarus 217, 7787.
Lorenz, R.D., Lunine, J.I., Withers, P.G. & McKay, C.P. (2001). Titan, mars and earth: entropy production by latitudinal heat transport. Geophys. Res. Lett. 28, 415418.
Lynch, R.C., King, A.J., Farías, M.E., Sowell, P., Vitry, C. & Schmidt, S.K. (2012). The potential for microbial life in the highest elevation (>6000 m.a.s.l.) mineral soils of the Atacama region. J. Geophys. Res. 117, G02028.
Maberly, S.C. (1990). Exogenous sources of inorganic carbon for photosynthesis by marine macroalgae. J. Physcol. 26, 439449.
Maberly, S.C. (1996). Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive lake. Freshw. Biol. 35, 579598.
Margot, J.L., Campbell, D.B., Jurgens, R.F. & Slade, M.A. (1999). Topography of the lunar poles from radar interferometry: a survey of cold trap locations. Science 284, 16581660.
McLean, D.M. (1991). A climate change mammalian population collapse mechanism. In Energy and Environment, eds. Kainlauri, E., Johansson, A., Kurki-Suonio, I. & Geshwiler, M., p. 93100. ASHRAE, Atlanta, Georgia.
McGuffie, K. & Henderson-Sellers, A. (2005). A Climate Modelling Primer, 3rd edn. John Wiley & Sons Ltd., West Sussex, England.
Meadows, A.J. (2007). The Future of the Universe. Springer-Verlag London Limited, London.
Mesbah, N.M. & Wiegel, J. (2012). Life under multiple extreme conditions: diversity and physiology of the halophilic alkalithermophile. Appl. Environ. Microbiol. 78, 40744082.
McCollom, T.M. (1999). Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa. J. Geophys. Res. 104, 3072930742.
Mojzsis, S.J., Arrhenius, G., McKeegan, K.D., Harrison, T.M., Nutman, A.P. & Friend, C.R.L. (1996). Evidence for life on earth before 3800 million years ago. Nature 384, 5559.
Myhre, G., Highwood, E.J., Shine, K.P. & Stordal, F. (1998). New estimates of radiative forcing due to well mixed greenhouse gases. Geophys. Res. Lett. 25, 27152718.
Néron de Surgy, O. & Laskar, J. (1997). On the long term evolution of the spin of the Earth. Astron. Astrophys. 318, 975989.
Neukum, G. et al. (2004). Recent and episodic volcanic and glacial activity on mars revealed by the high resolution stereo camera. Nature 432, 971979.
Nixdorf, B., Krumbeck, H., Jander, J. & Beulker, C. (2003). Comparison of bacterial and phytoplankton productivity in extremely acidic mining lakes and eutrophic hard water lakes. Acta Oecol. 24, S281S288.
Ohata, T., Furukawa, T. & Osada, K. (1994). Glacioclimatological study of perennial ice in the Fuji Ice Cave, Japan. Part 2. interannual variation and relation to climate. Arctic Alpine Res. 26, 238244.
Orcutt, B.N., Sylvan, J.B., Knab, N.J. & Edwards, K.J. (2011). Microbial ecology of the dark ocean above, at and below the Seafloor. Microbiol. Mol. Biol. Rev. 75, 361422.
Oren, A. (2009). Microbial diversity. In Encyclopedia of Life Sciences (ELS). John Wiley & Sons Ltd, Chichester.
Paillard, A.A. (2010). Climate and the orbital parameters of the Earth. C. R. Geosci. 342, 273285.
Parnell, J., Boyce, A.J. & Blamey, N.J.F. (2010). Follow the methane: the search for a deep biosphere, and the case for sampling serpentinites, on Mars. Int. J. Astrobiol. 9, 193200.
Pavlov, A.A., Kasting, J.F., Brown, L.L., Rages, K.A. & Freedman, F. (2000). Greenhouse Warming by CH4 in the Atmosphere of Early Earth. Geophys. Res. 105, 1198111990.
Pedersen, K. (2000). Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiol. Lett. 185, 916.
Price, C. (2009). Thunderstorms Lightning and Climate Change. In: eds. Betz, H.D., Schumann, U., Laroche, P.Lightning: Principles, Instruments and Applications: Review of Modern Lightning Research. vol. 1. Dordrecht, The Netherlands, Springer, pp. 521535.
Price, C. & Asfur, M. (2006a). Can lightning observations be used as an indicator of upper tropospheric water vapor variability? Bull. Am. Meteor. Soc. 87, 291298.
Rákóczi, F. & Iványi, S. (1999). Water vapour and greenhouse effect. Geofizika 16–17, 6572.
Raven, J.A. & Larkum, A.W.S. (2007). Are there ecological implications from the proposed energetic restrictions on photosynthetic oxygen evolution at high oxygen concentrations? Photosyn. Res. 94, 3142.
Reith, F. (2011). Life in the deep subsurface. Geology 39, 287288.
Ribas, I., Guinan, E.F., Gúdel, M. & Audard, M. (2005). Evolution of solar activity over time and effects on planetary atmospheres. I. high-energy irradiances (1–1700 A). Astrophys. J. 622, 680694.
Rosing, M.T. (1999). C-13-depleted carbon microparticles in >3700-Ma seafloor sedimentary rocks from west Greenland. Science 283, 674676.
Rosing, M.T., Bird, D.K., Sleep, N.H. & Bjerrum, C.J. (2010). No climate paradox under the faint early Sun. Nature 464, 744747.
Rothschild, L.J. & Mancinelli, R.L. (2001). Life in extreme environments. Nature 409, 10921101.
Sato, M. & Fukunishi, H. (2005). New evidence for a link between lightning activity and tropical upper cloud coverage. Geophys. Res. Lett. 32, L12807.
Schidlowski, M. (1988). A 3800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333, 313318.
Schneider, J. (2010). The Extrasolar Planets Encyclopaedia. Available online at
Scott, B.J. (1994). Cyclic activity in the crater lakes of Waimangu hydrothermal system, New Zealand. Geothermics 23, 555572.
Seager, S., Schrenk, M. & Bains, W. (2012). An astrophysical view of earth-based metabolic biosignature gases. Astrobiology 12, 6182.
Sekercioglu, C.H., Schneider, S.H., Fay, J.P. & Loarie, S.R. (2007). Climate change, elevational range shifts, and bird extinction. Conserv. Biol. 22, 140150.
Sekiguchi, M., Hayakawa, M., Nickolaenko, A.P. & Hobara, Y. (2006). Evidence on a link between the intensity of Schumann resonance and global surface temperature. Ann. Geophys. 24, 18091817.
Smrekar, S.E., Stofan, E.R., Mueller, N., Treiman, A., Elkins-Tanton, L., Helbert, J., Piccioni, G. & Drossart, P. (2010). Recent hotspot volcanism on Venus from VIRTIS emissivity data. Science 328, 605608.
Spiegel, D.S., Raymond, S.N., Dressing, C.D., Scharf, C.A. & Mitchell, J.L. (2010). Generalized milankovitch cycles and long-term climatic habitability. Astrophys. J. 721, 13081318.
Strother, P.K., Battison, L., Brasier, M.D. & Wellman, C.H. (2011). Earth's earliest non-marine eukaryotes. Nature 473, 505509.
Tarter, J.C. et al. (2007). A reappraisal of the habitability of planets around M Dwarf stars. Astrobiology 7, 3065.
Thiermann, F., Akoumianaki, I., Hughes, J.A. & Giere, O. (1997). Benthic fauna of a shallow water gaseohydrothermal vent area in the Aegean Sea (Milos, Greece). Marine Biol. 128, 149159.
Tie, X., Zhang, R., Brasseur, G. & Lei, W. (2002). Global NOx production by lightning. J. Atmos. Chem 43, 6174.
Tomasella, L., Marzari, F. & Vanzani, V. (1996). Evolution of the Earth obliquity after the tidal expansion of the Moon orbit. Planet. Space Sci. 44, 427430.
Tuttle, M.D. & Stevenson, D.E. (1977) Variation in the cave environment and its biological implications. In National Cave Management Symp. Proc., 1977, Adobe Press, Albuquerque, NM, pp. 108121.
Valsami-Jones, E., Baltatzis, E., Bailey, E.H., Boyce, A.J., Alexander, J.L., Magganas, A., Anderson, L., Waldron, S. & Ragnarsdottir, K.V. (2005). The geochemistry of fluids from an active shallow submarine hydrothermal system: Milos island, Hellenic Volcanic Arc. J. Volcanol. Geotherm. Res. 148, 130151.
Vásquez, M., Pallé, E. & Montañés Rodríguez, P. (2010). The Earth as a Distant Planet, p. 10013. Springer Science + Business Media, New York, NY.
Walker, J.C.G. (1991). Feedback processes in the biogeochemical cycles of Carbon. In Scientists on Gaia, eds Schneider, S.H. & Boston, P.J., pp. 183190. The MIT Press, Cambridge, Massachusetts.
Ward, P.D. & Brownlee, D. (2002). The Life and Death of Planet Earth. Times Books, New York.
Welsh, W.F. et al. (2012) Transiting circumbinary planets Kepler-34 b and Kepler-35 b. Nature 481, 475479.
Williams, D.M. & Kasting, J.F. (1997). Habitable Planets with High Obliquities. Icarus 129, 254267.
Williams, E., Mushtak, V., Rosenfeld, D., Goodman, S. & Boccippio, D. (2005). Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate. Atmos. Res. 76, 288306.
Williams, K.E., McKay, C.P., Toon, O.B. & Head, J.W. (2010). Do ice caves exist on Mars? Icarus 209, 358368.
Womack, A.M., Bohannan, B.J.M. & Green, J.L. (2010). Biodiversity and biogeography of the atmosphere. Phil. Trans. R. Soc. B 365, 36453653.
Wood, C.A. (1984). Calderas: a planetary perspective. J. Geophys. Res. 89, 83918406.
Yoder, J.A., Chambers, M.J., Tank, J.L. & Keeney, G.D. (2009). High temperature effects on water loss and survival examining the hardiness of female adults of the spider beetles, Mezium affine and Gibbium aequinoctiale. Journal of Insect Science 9, Article 68.


Related content

Powered by UNSILO

Swansong biospheres: refuges for life and novel microbial biospheres on terrestrial planets near the end of their habitable lifetimes

  • Jack T. O'Malley-James (a1), Jane S. Greaves (a1), John A. Raven (a2) and Charles S. Cockell (a3)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.