Skip to main content
×
×
Home

The thermal limits to life on Earth

  • Andrew Clarke (a1) (a2)
Abstract

Living organisms on Earth are characterized by three necessary features: a set of internal instructions encoded in DNA (software), a suite of proteins and associated macromolecules providing a boundary and internal structure (hardware), and a flux of energy. In addition, they replicate themselves through reproduction, a process that renders evolutionary change inevitable in a resource-limited world. Temperature has a profound effect on all of these features, and yet life is sufficiently adaptable to be found almost everywhere water is liquid. The thermal limits to survival are well documented for many types of organisms, but the thermal limits to completion of the life cycle are much more difficult to establish, especially for organisms that inhabit thermally variable environments. Current data suggest that the thermal limits to completion of the life cycle differ between the three major domains of life, bacteria, archaea and eukaryotes. At the very highest temperatures only archaea are found with the current high-temperature limit for growth being 122 °C. Bacteria can grow up to 100 °C, but no eukaryote appears to be able to complete its life cycle above ∼60 °C and most not above 40 °C. The lower thermal limit for growth in bacteria, archaea, unicellular eukaryotes where ice is present appears to be set by vitrification of the cell interior, and lies at ∼−20 °C. Lichens appear to be able to grow down to ∼−10 °C. Higher plants and invertebrates living at high latitudes can survive down to ∼−70 °C, but the lower limit for completion of the life cycle in multicellular organisms appears to be ∼−2 °C.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The thermal limits to life on Earth
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The thermal limits to life on Earth
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The thermal limits to life on Earth
      Available formats
      ×
Copyright
The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence http://creativecommons.org/licenses/by/3.0/.
Corresponding author
e-mail: accl@bas.ac.uk
References
Hide All
Avery, O.T., MacLeod, C.M. & McCarty, M. (1944). J. Exp. Med. 79, 137159.
Bains, W. (2004). Astrobiology 4(2), 137167.
Bains, W. (In press). Int. J. Astrobiol. (this issue).
Baross, J.A. & Deming, J.W. (1983). Nature 303(5916), 423426.
Baross, J.A., Lilley, M.D. & Gordon, L.I. (1982). Nature 298(5872), 366368.
Bedau, M.A. (2010). Astrobiology 10(10), 10111020.
Benner, S.A. (2010). Astrobiology 10(10), 10211030.
Benner, S.A., Ricardo, A. & Carrigan, M.A. (2004). Curr. Opin. Chem. Biol. 8, 672689.
Bernhardt, G., Lüdemann, H.-D., Jaenicke, R., König, H. & Stetter, K.O. (1984). Naturwissenschaften 71(11), 583586.
Blöchl, E., Rachel, R., Burggraf, F., Hafenbradl, D., Jannasch, H.W. & Stetter, K.O. (1997). Extremophiles 1(1), 1421.
Bodetsky, A.B. (1984). Information Bulletin of Soviet Antarctic Expedition. Hydrometeoizdat, Leningrad, p. 105.
Brock, T.D. (1967). Nature 214(5091), 882885.
Brock, T.D. (1978). Thermophilic Microorganisms and Life at High Temperatures. Springer-Verlag, New York, p. 465.
Brock, T.D. & Brock, M.L. (1966). Nature 209, 733734.
Brock, T.D. & Freeze, H. (1969). J. Bacteriol. 98(1), 289297.
Caldwell, S.L., Liu, Y., Ferrrera, I., Beveridge, T. & Reysenbach, A.-L. (2009). Int. J. Syst. Evol. Microbiol. 60, 338343.
Cary, S.C., Shank, T. & Stein, J. (1998). Nature 391(6667), 545546.
Clarke, A. (2003). In Evolution on Planet Earth: The Impact of the Physical Environment. ed. Rothschild, L.J. & Lister, A.M.Academic Press, London, pp. 187207.
Clarke, A. & Rothery, P. (2008). Funct. Ecol. 22(1), 5867.
Clarke, A., Griffiths, H.J., Barnes, D.K.A., Meredith, M.P. & Grant, S.M. (2009). J. Geophys. Res. – Biogeosci. 114, G03003.
Clarke, A., Rothery, P. & Isaac, N.J.B. (2010). J. Anim. Ecol. 79(3), 610619.
Clarke, A., Morris, G.J., Fonseca, F., Murray, B.J., Acton, E. & Price, H.C. (2013). PLoS ONE 8(6), e66207.
Committee on the Limits of Organic Life in Planetary Systems (2007). The limits of organic life in planetary systems, National Research Council of the National Academies, p. 100.
Dallinger, W.H. (1887). J. R. Microsc. Soc. 7(2), 185199.
de Vera, J.-P., Rettberg, P. & Ott, S. (2008). Orig. Life Evol. Biosph. 38(5), 457468.
de Vera, J.-P., Möhlmann, D., Butina, F., Lorek, A., Wernecke, R. & Ott, S. (2010). Astrobiology 10(2), 215227.
Debenedetti, P.G. (1996). Metastable Liquids: Concepts and Principles. Princeton University Press, New Jersey, p. 411.
Deckert, G. et al. (1998). Nature 392(6674), 353358.
Deming, J.W. (1986). Actes Colloq. 3, 325332.
Denlinger, D.L. & Lee, R.E. (eds) (2010). Low Temperature Biology of Insects. Cambridge University Press, Cambridge, UK, p. 390.
Desbruyères, D. & Laubier, L. (1991). Ophelia Suppl. 5(1), 3145.
DeVries, A.L. & Cheng, C.-H.C. (1992). The role of antifreeze glycopeptides and peptides in the survival of cold-water fishes. In Water and Life: Comparative Analyis of Water Relationships at the Organismic. Cellular and Molecular Levels. ed. Somero, G.N., Osmond, C.B. & Bolis, C.L.Springer-Verlag, Berlin, pp. 310315.
Dilly, G.F., Young, C.R., Lane, W.S., Pangilinan, J. & Girguis, P.R. (2012). Proc. R. Soc. Lond. B 279(1741), 33473356.
Doemel, W.N. & Brock, T.D. (1970). Arch. Mikrobiol. 72(4), 326332.
Doemel, W.N. & Brock, T.D. (1971). J. Gen. Microbiol. 67(1), 1732.
El Fadli, K.I. et al. (2013). Bull. Am. Meteorol. Soc. 94(2), 199204.
Ellis, R.J. (2001). Trends Biochem. Sci. 26(10), 597604.
Farrell, A.H., Hohenstein, K.A. & Shain, D.H. (2004). J. Mol. Evol. 59(5), 666673.
Fiala, G. & Stetter, K.O. (1986). Arch. Microbiol. 145(1), 5661.
Gage, J.D. & Tyler, P.A. (1991). Deep-sea biology: a natural history of organisms at the deep-sea floor. Cambridge University Press, Cambridge, UK, p. 504.
Galtier, N. & Lobry, J.R. (1997). J. Mol. Evol. 44(6), 632636.
Geiges, O. (1996). Adv. Space Res. 18(12), 109118.
Hagvar, S. (2010). Eur. J. Entomol. 107(3), 281298.
Hand, S.C., Menze, M.A., Toner, M., Boswell, L. & Moore, D. (2011). Annu. Rev. Physiol. 73, 115124.
Hansen, L.D., Criddle, R.S. & Battley, E.H. (2009). Pure Appl. Chem. 81(10), 18431855.
Heurtault, J. & Vannier, G. (1990). Acta Zool. Fennica 190, 165172.
Hickey, D.A. & Singer, G.A.C. (2004). Genome Biol. 5(10), 117
Hirsh, A.G. (1987). Cryobiology 24(3), 214228.
Hirsh, A.G., Williams, R.J. & Meryman, H.T. (1985). Plant Physiol. 79(1), 4156.
Hochachka, P.W. & Somero, G.N. (2002). Biochemical Adaptation: Mechanism and Process in Physiological Evolution. Oxford University Press, Oxford, UK, p. 466.
Hoeppli, R. & Chu, H.J. (1932). Hong Kong Nat., (Suppl. 1), 1528.
Hoeppli, R.J.C. (1926). Trans. Am. Microsc. Soc. 45, 234255.
Hoffmann, A.A., Chown, S.L. & Clusella-Trullas, S. (2013). Funct. Ecol. 27(4), 934949.
Hoshino, T., Xiao, N., Yajima, Y. & Tkachenko, O.B. (2013). Fungi in cryosphere: their adaptations to environments. In Cold-Adapted Microorganisms. ed. Yumoto, I.Caister Academic Press, Caister, Norfolk, UK, pp. 5168.
Huber, R., Langworthy, T.A., König, H., Thomm, M., Woese, C.R., Sleytr, U.B. & Stetter, K.O. (1986). Arch. Microbiol. 144(4), 324333.
Huber, R., Kurr, M., Jannasch, H.W. & Stetter, K.O. (1989). Nature 342(6251), 833834.
Huber, R., Eder, W., Hedlwein, S., Wanner, G., Huber, H., Rachel, R. & Stetter, K.O. (1998). Appl. Environ. Microbiol. 64(10), 35763583.
Hurst, L.D. & Merchant, A.R. (2001). Proc. R. Soc. Lond. B 286(1466), 493497.
Hutchinson, G.E. (1959). Am. Nat. 93(870), 145159.
Jones, W.J., Leigh, J.A., Mayer, F., Woese, C.R. & Wolfe, R.S. (1983). Arch. Microbiol. 136(4), 254261.
Kappen, L. (1993). Lichens in the Antarctic region. In Antarctic Microbiology. ed. Friedmann, E.I.Wiley-Liss, New York, pp. 433490.
Kashefi, K. & Lovley, D.R. (2003). Science 301(5635), 934934.
Kashefi, K., Holmes, D.E. & Reysenbach, A.L., Lovley, R.D. (2002). Appl. Environ. Microbiol. 68(4), 17351742.
Kohshima, S. (1984). Nature 310(5974), 225227.
Kurr, M., Huber, R., König, H., Jannasch, H.W., Fricke, H., Kristjansson, J.K. & Stetter, K.O. (1991). Arch. Microbiol. 156(4), 239247.
Lang, E.W. (1986). Adv. Space Res. 6(12), 251255.
Leather, S.R., Walters, K.F.A. & Bale, J.S. (1993). The Ecology of Insect Overwintering. Cambridge University Press, Cambridge, UK, p. 255.
Lovelock, J.E. (1965). Nature 207(997), 568570.
Luisi, P.L. (1998). Orig. Life Evol. Biosph. 28(4–6), 613622.
Lutz, R.A. (2012). Deep-sea hydrothermal vents. In Life at Extremes: Environments, Organisms and Strategies for Survival. ed. Bell, E.M.CAB International, Wallingford, Oxfordshire, pp. 242270.
Márquez, L.M., Redman, R.S., Rodriguez, R.J. & Roosinck, M.J. (2007). Science 315(5811), 513515.
Marsh, A.C. (1985). Physiol. Zool. 58(6), 629636.
Mazur, P. (2004). Principles of cryobiology. In Life in the Frozen State. ed. Fuller, B.J., Lane, N. & Benson, E.E.CRC Press, Boca Raton, pp. 365.
McCafferty, D.J., Gilbert, C., Thierry, A.-M., Currie, J., Le Maho, Y. & Ancel, A. (2013). Biol. Lett. 9, 20121192.
Miller, R.R., Minckley, W.L. & Norris, S.M. (2005). Freshwater Fishes of Mexico. University of Chicago Press, Coyoacán, México, p. 652.
Minckley, W.L. & Minckley, C.O. (1986). Copeia 1986(1), 184192.
Montejano, G. & Absalón, I.B. (2009). Caracterización del hábitat acuático asociado al pez Cyprinodon (nsp.) julimes (in Spanish). Laboratorio de Ficología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, México, p. 34.
Morowitz, H.J. (1968). Energy Flow in Biology: Biological Organization as a Problem in Thermal Physics. Academic Press, New York.
Ocaña, A. (1991). Nematol. Mediterr. 19(2), 173175.
Ogg, C.D. & Patel, B.K.C. (2009). Int. J. Syst. Evol. Microbiol. 59(5), 11001107.
Onofri, S. et al. (2012). Astrobiology 12(5), 508516.
Öpik, H. & Rolfe, S.A. (2005). The Physiology of Flowering Plants. Cambridge University Press, Cambridge, UK, p. 392.
Pearce, R.S. (2004). Adaptation of higher plants to freezing. In Life in the Frozen State. ed. Fuller, B.J., Lane, N. & Benson, E.E.CRC Press, Boca Raton, pp. 171203.
Peat, H.J., Clarke, A. & Convey, P. (2007). J. Biogeogr. 34(1), 132146.
Pley, U., Schipka, J., Gambacorta, A., Jannasch, H.W., Fricke, H., Rachel, R. & Stetter, K.O. (1991). Syst. Appl. Microbiol. 14(3), 245253.
Precht, H., Christophersen, J., Hensel, H. & Larcher, W. (1973). Temperature and Life. Springer-Verlag, p. 779.
Price, P.B. & Sowers, T. (2004). Proc. Natl. Acad. Sci. USA 101(13), 46314636.
Ravaux, J., Hamel, G., Zbinden, M., Tasiemski, A.A., Boutet, I., Léger, N., Tanguy, A., Jollivet, D. & Shillito, B. (2013). PLoS ONE 8(5), e64074 (64076 p.).
Redman, R.S., Sheehan, K.B., Stout, R.G., Rodriguez, R.J. & Henson, J.M. (2002). Science 298(5598), p. 1581.
Rivkina, E., Shcherbakova, V., Laurinavichius, K., Petrovskaya, L., Krivushin, K., Kraev, G., Pecheritsina, S. & Gilichinsky, D. (2007). FEMS Microbiol. Ecol. 61(1), 115.
Rivkina, E.M., Friedmann, E.I., McKay, C.P. & Gilichinsky, D. (2000). Appl. Environ. Microbiol. 66(8), 32303233.
Sako, Y., Nomura, N., Uchida, A., Ishida, Y., Morii, H., Koga, Y., Hoaki, T. & Maruyama, T. (1996). Int. J. Syst. Bacteriol. 46(4), 10701077.
Schmid, W.D. (1982). Science 215(4533), 697698.
Schmidt-Nielsen, K., Taylor, C.R. & Shkolnik, A. (1971). J. Exp. Biol. 55(2), 385398.
Schmidt-Nielsen, S. (1902). Zentrabl Bakteriol Parasitenkd Infekionskr Hyg Abt II 9, 145147.
Schrenk, M.O., Kelley, D.S., Delaney, J.R. & Baross, J.A. (2003). Appl. Environ. Microbiol. 69(6), 35803592.
Schrödinger, E. (1944). What is Life? The Physical Aspect of the Living Cell. Cambridge University Press, p. 96.
Schroeter, B., Green, T.G.A., Kappen, L. & Seppelt, R.D. (1994). Cryptogam. Bot. 4(2), 233241.
Seki, S., Kleinhans, F.W. & Mazur, P. (2009). Cryobiology 58(2), 157165.
Smith, S.D., Didden-Zopfy, B. & Nobel, P.S. (1984). Ecology 65(2), 643651.
Sokolova, T., Hanel, J., Onyenwoke, R.U., Reysenbach, A.-L., Banta, A., Geyer, R., Gonzáles, J.M., Whitman, W.B. & Wiegel, J. (2006). Extremophiles 11(1), 145157.
Steel, H., Verdoodt, F., Čerevková, A., Couvreur, M., Fonderie, P., Moens, T. & Bert, W. (2013). Invertebr. Biol. 132(2), 108119.
Sterner, R. & Liebl, W. (2001). Critic. Rev. Biochem. Mol. Biol. 36(1), 39106.
Stetter, K.O. (1988). Syst. Appl.Microbiol. 10(2), 172173.
Stetter, K.O., Thomm, M., Winter, J., Wildgruber, G., Huber, H., Zillig, W., Jané-Covic, D., König, H., Palm, P. & Wunderl, S. (1981). Zentralblatt für Bakteriologie Mikrobiologie und Hygiene: I. Abt. Originale C: Allgemeine, angewandte und ökologische Mikrobiologie 2(2), 166178.
Storey, K.B. & Storey, J.M. (1996). Annu. Rev. Ecol. Syst. 27, 365386.
Storey, K.B. & Storey, J.M. (2004). Physiology, biochemistry, and molecular biology of vertebrate freeze tolerance: the wood frog. In Life in the Frozen State. ed. Fuller, B.J., Lane, N. & Benson, E.E.CRC Press, Boca Raton, pp. 243274.
Strimbeck, G.R., Johnson, A.H. & Vann, D.R. (1993). Tree Physiol. 13(2), 131144.
Suryanarayanan, T.S., Govindarajulu, M.B., Thirumalai, E., Reddy, M.S. & Money, N.P. (2011). Fungal Biol. 115(9), 833838.
Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., Miyazaki, J.-I., Hirayama, H., Makagawa, S., Nunoura, T. & Horikoshi, K. (2008). Proc. Natl. Acad. Sci. USA 105(31), 194910954.
Tansey, M.R. & Brock, T.D. (1972). Proc. Natl. Acad. Sci. USA 69(9), 24262428.
Tehei, M. & Zaccai, G. (2007). FEBS J. 274(16), 40344043.
Thomas, D.N. (2012). Sea ice. In Life at Extremes: Environments, Organisms and Strategies for Survival. ed. Bell, E.M.CAB International, Wallingford, Oxfordshire, pp. 6280.
Trent, J.D., Chastain, R.A. & Yayanos, A.A. (1984). Nature 307(5953), 737740.
Turner, J. et al. (2009). J. Geophys. Res. Atmos. 114, D24102.
Van Dover, C.L. (2000). The Ecology of Deep-Sea Hydrothermal Vents. Princeton University Press, Princeton, New Jersey, p. 424.
von Neumann, J. (1951). The general and logical theory of automata. In Cerebral Mechanisms in Behavior; the Hixon Symposium. ed. Jeffress, L.A.John Wiley, New York, pp. 141.
von Neumann, J. (1966). Theory of Self-Reproducing Automata. Edited and completed by Arthur, W.Burks, University of Illinois Press, Urbana, Illinois, p. 388.
Ward, D. (2009). The Biology of Deserts. Oxford University Press, Oxford, p. 339.
Ward, D. & Seeley, M.K. (1966). Evol. Ecol. 10(4), 341359.
Ward, P.D. & Baross, J.A. (2007). Alien biochemistries. In Planets and Life: The Emerging Science of Astrobiology. ed. Sullivan, W.T. & Baross, J.A.Cambridge University Press, Cambridge, UK, pp. 537544.
Watson, J.D. & Crick, F.H.C. (1953). Nature 171(4356), 737738.
Wehner, R., Marsh, A.C. & Wehner, S. (1992). Nature 357, 586587.
Wharton, D.A. (2002). Life at the Limits: Organisms in Extreme Environments. Cambridge University Press, Cambridge, UK, p. 320.
Wharton, D.A. & Ferns, D.J. (1995). J. Exp. Biol. 198, 13811387.
White, R.H. (1984). Nature 310(5976), 430432.
Wowk, B. (2010). Cryobiology 60(1), 1122.
Zhou, E.H., Trepat, X., Park, C.Y., Lenormand, G., Oliver, M.N., Mihailovich, S.M., Hardin, C., Weitz, D.A., Butler, J.P. & Fredberg, J.J. (2009). Proc. Natl. Acad. Sci. USA 106(26), 1063210637.
Zillig, W., Holz, I., Klenk, H.-P., Trent, J., Wunderl, S., Janekovic, D., Imsel, E. & Haas, B. (1987). Syst. Appl. Microbiol. 9(1–2), 6270.
Zillig, W., Holz, I., Janekovic, D., Klenk, H.-P., Imsel, E., Trent, J., Wunderl, S., Forjaz, V.H., Coutinho, R. & Ferreira, T. (1990). J. Bacteriol. 172(7), 39593965.
Zillig, W., Holz, I. & Wunderl, S. (1991). Int. J. Syst. Bacteriol. 41, 169170.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed