Skip to main content
×
×
Home

Ultraviolet irradiation of glycine in presence of pyrite as a model of chemical evolution: an experimental and molecular modelling approach

  • Azarhel de la Cruz-López (a1) (a2), Ebelia del Ángel-Meraz (a1), María Colín-García (a3), Sergio Ramos-Bernal (a2), Alicia Negrón-Mendoza (a2) and Alejandro Heredia (a2)...
Abstract

In this work, the molecular interaction of the amino acid glycine and the mineral pyrite was performed to gain insight into the potential role of the mineral as a precursor of chemical complexity in the presence of ultraviolet (UV) radiation. Glycine samples were self-assembled on pyrite with and without exposure to UV radiation and subsequently characterized by scanning electron microscopy, infrared spectroscopy (with the second-derivative method), and AM1 and PM3 semi-empirical molecular computational simulations. In this work, our molecular modelling results suggest that pyrite acts as a template for self-assembly of glycine, and it is a potential catalyst for the glycine dimerization of relevance in interstellar space and ancient Earth conditions. A change in the structural complexity of glycine from the α to its γ polymorph when irradiated with UV radiation can be a condition for chemical evolution towards living forms.

Copyright
Corresponding author
e-mail: aheredia@nucleares.unam.mx
References
Hide All
Baran, J. & Ratajczak, H. (2005). Polarised IR and Raman spectra of the γ-glycine single crystal. Spectrochim. Acta A, Mol. Biomol. Spectrosc. 61, 16111626.
Barth, A. & Haris, P.I. (2009). Biological and Biomedical Infrared Spectroscopy. IOS Press, Amsterdam, Netherlands.
Bebié, J. & Schoonen, M.A. (2000). Pyrite surface interaction with selected organic aqueous species under anoxic conditions. Geochem. Trans. 1, 47.
Betejtin, A. (1970). Curso de mineralogía. Mir, Moscú.
Borda, M.J., Strongin, D.R. & Schoonen, M.A. (2004). A vibrational spectroscopic study of the oxidation of pyrite by molecular oxygen. Geochim. Cosmochim. Acta 68, 18071813.
Burns, R.G. & Fisher, D.S. (1990). Iron-sulfur mineralogy of Mars: magmatic evolution and chemical weathering products. J. Geophys. Res. 95, 14415.
Cabán-Acevedo, M., Kaiser, N.S., English, C.R., Liang, D., Thompson, B.J., Chen, H.-E., Czech, K.J., Wright, J.C., Hamers, R.J. & Jin, S. (2014). Ionization of High-density deep donor defect states explains the low photovoltage of iron pyrite single crystals. J. Am. Chem. Soc. 136, 1716317179.
Cleaves, H.J. II, Michalkova Scott, A., Hill, F.C., Leszczynski, J., Sahai, N., Hazen, R. (2012). Mineral–organic interfacial processes: potential roles in the origins of life. Chem. Soc. Rev. 41, 5502.
Cleaves, H.J., Lazcano, A., Ledesma Mateos, I., Negrón-Mendoza, A., Peretó, J. & Silva, E. (2014). Herrera's ‘Plasmogenia’ and Other Collected Works. Springer New York, New York, NY.
Cockell, C.S. (2000). Ultraviolet radiation and the photobiology of earth's early oceans. Orig. Life Evol. Biosph. J. Int. Soc. Stud. Orig. Life 30, 467499.
Colin-Garcia, M., Heredia, A., Negron-Mendoza, A. & Ramos-Bernal, S. (2012). Organics-minerals interactions and the origin of life. LPI Contrib. 1667, 6072.
Colin-Garcia, M., Heredia, A., Negron-Mendoza, A., Ortega, F., Pi, T. & Ramos-Bernal, S. (2014). Adsorption of HCN onto sodium montmorillonite dependent on the pH as a component to chemical evolution. Int. J. Astrobiol. 13, 310318.
Contreras-Torres, F.F. & Basiuk, V.A. (2005). Theoretical prediction of gas-phase infrared spectra of imidazo[1,2-a]pyrazinediones and imidazo[1,2-a]imidazo[1,2-d]pyrazinediones derived from glycine. Spectrochim. Acta A, Mol. Biomol. Spectrosc. 61, 25602575.
Degens, E.T. (1989). Perspectives on Biogeochemistry. Springer, Berlin; Heidelberg; New York; London; Paris; Tokyo.
Draganić, Z.D., Niketić, V. & Vujošević, S.I. (1985). Radiation chemistry of an aqueous solution of glycine: compounds of interest to chemical evolution studies. J. Mol. Evol. 22, 8290.
Folliet, N., Gervais, C., Costa, D., Laurent, G., Babonneau, F., Stievano, L., Lambert, J.-F. & Tielens, F. (2013). A molecular picture of the adsorption of glycine in mesoporous silica through NMR experiments combined with DFT-D calculations. J. Phys. Chem. C 117, 41044114.
Gallignani, M., Rondón, R.A., Ovalles, J.F. & Brunetto, M.R. (2014). Transmission FTIR derivative spectroscopy for estimation of furosemide in raw material and tablet dosage form. Acta Pharm. Sin. B 4, 376383.
Glavin, D.P. & Bada, J.L. (2001). Survival of amino acids in micrometeorites during atmospheric entry. Astrobiology 1, 259269.
Goldman, N., Reed, E.J., Fried, L.E., William Kuo, I.F. & Maiti, A. (2010). Synthesis of glycine-containing complexes in impacts of comets on early Earth. Nat. Chem. 2, 949954.
Hazen, R.M., Papineau, D., Bleeker, W., Downs, R.T., Ferry, J.M., McCoy, T.J., Sverjensky, D.A. & Yang, H. (2008). Mineral evolution. Am. Mineral. 93, 16931720.
Heredia, A., van der Strate, H.J., Delgadillo, I., Basiuk, V.A. & Vrieling, E.G. (2008). Analysis of organo–silica interactions during valve formation in synchronously growing cells of the diatomnavicula pelliculosa. ChemBioChem 9, 573584.
Horneck, G. (ed.) (2007). Complete Course in Astrobiology. Wiley–VCH, Weinheim.
Hu, J., Zhang, Y., Law, M. & Wu, R. (2012). Increasing the band gap of iron pyrite by alloying with oxygen. J. Am. Chem. Soc. 134, 1321613219.
Moriarty, D., Hibbitts, C.A., Lisse, C.M., Dyar, M.D., Harlow, G., Ebel, D. & Peale, R. (2010). Near-far IR spectra of sulfide minerals relevant to comets. In Presented at the Lunar and Planetary Science Conf., March 1–5, 2010 in The Woodlands, Texas, p. 2447.
Mourant, J.R., Yamada, Y.R., Carpenter, S., Dominique, L.R. & Freyer, J.P. (2003). FTIR spectroscopy demonstrates biochemical differences in mammalian cell cultures at different growth stages. Biophys. J. 85, 19381947.
Okihana, H. & Ponnamperuma, C. (1982). A protective function of the coacervates against UV light on the primitive Earth. Nature 299, 347349.
Patel, M.R., Bérces, A., Kerékgyárto, T., Rontó, G., Lammer, H. & Zarnecki, J.C. (2004). Annual solar UV exposure and biological effective dose rates on the Martian surface. Adv. Space Res. Off. J. Comm. Space Res. COSPAR 33, 12471252.
Pernet, A., Pilmé, J., Pauzat, F., Ellinger, Y., Sirotti, F., Silly, M., Parent, P. & Laffon, C. (2013). Possible survival of simple amino acids to X-ray irradiation in ice: the case of glycine. Astron. Astrophys. 552, A100.
Pilling, S. et al. (2011). Photostability of gas- and solid-phase biomolecules within dense molecular clouds due to soft X-rays: photostability of biomolecules in ISM. Mon. Not. R. Astron. Soc. 411, 22142222.
Pilling, S., Mendes, L.A.V., Bordalo, V., Guaman, C.F.M., Ponciano, C.R. & da Silveira, E.F. (2013). The influence of crystallinity degree on the glycine decomposition induced by 1 mev proton bombardment in space analog conditions. Astrobiology 13, 7991.
Pilling, S., Nair, B.G., Escobar, A., Fraser, H. & Mason, N. (2014). The temperature effect on the glycine decomposition induced by 2 keV electron bombardment in space analog conditions. Eur. Phys. J. D 68, 19.
Portugal, W., Pilling, S., Boduch, P., Rothard, H. & Andrade, D.P.P. (2014). Radiolysis of amino acids by heavy and energetic cosmic ray analogues in simulated space environments: glycine zwitterion form. Mon. Not. R. Astron. Soc. 441, 32093225.
Rath, R.K., Subramanian, S. & Pradeep, T. (2000). Surface chemical studies on pyrite in the presence of polysaccharide-based flotation depressants. J. Colloid Interface Sci. 229, 8291.
Rickard, D. (2015). Pyrite: A Natural History of Fool's Gold. Oxford University Press, New York.
Russell, M.J., Daniel, R.M., Hall, A.J. & Sherringham, J.A. (1994). A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life. J. Mol. Evol. 39, 231243.
Tributsch, H., Fiechter, S., Jokisch, D., Rojas-Chapana, J. & Ellmer, K. (2003). Photoelectrochemical power, chemical energy and catalytic activity for organic evolution on natural pyrite interfaces. Orig. Life Evol. Biosph. J. Int. Soc. Stud. Orig. Life 33, 129162.
Zhang, X., Borda, M.J., Schoonen, M.A. & Strongin, D.R. (2003). Pyrite oxidation inhibition by a cross-linked lipid coating. Geochem. Trans. 4, 8.
Zolotov, M.Y. & Shock, E.L. (2005). Formation of jarosite-bearing deposits through aqueous oxidation of pyrite at Meridiani Planum. Mars. Geophys. Res. Lett. 32. doi: 10.1029/2005GL024253.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed