Skip to main content Accessibility help

Compact RF non-linear electro thermal model of SiGe HBT for the design of broadband ADC's

  • Alaa Saleh (a1), Abdel Kader El Rafei (a1), Mountakha Dieng (a1), Tibault Reveyrand (a1), Raphael Sommet (a1), Jean-Michel Nebus (a1) and Raymond Quere (a1)...


The design of high speed integrated circuits heavily relies on circuit simulation and requires compact transistor models. This paper presents a non-linear electro-thermal model of SiGe heterojunction-bipolar transistor (HBT). The non-linear model presented in this paper uses a hybrid π topology and it is extracted using IV and S-parameter measurements. The thermal sub-circuit is extracted using low-frequency S-parameter measurements. The model extraction procedure is described in detail. It is applied here to the modeling of npn SiGe HBTs. The proposed non-linear electro-thermal model is expected to be used for the design of high-speed electronic functions such as broadband analog digital converters in which both electrical and thermal aspects are engaged. The main focus and contribution of this paper stands in the fact that the proposed non-linear model covers wideband-frequency range (up to 65 GHz).


Corresponding author

Corresponding author: Alaa Saleh Email:


Hide All
[1]Cressler, J.D.: Silicon–germanium as an enabling technology for extreme environment electronics. IEEE Trans. Devices Mater. Reliab., 10 (2010), 437448.
[2]De Graaff, H.C.: State of the art in compact modelling with emphasis on bipolar RF circuit design, In Delft University of Technology. Solid-State Device Research Conf., September 1997, 1423.
[3]Bhattacharyya, A.; Fregonese, S.; Maneux, C.; Zimmer, T.: Modeling of SiGe spike mono emitter HBT with HICUM in static and dynamic operations, In IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), 2011, 5356.
[4]Schroter, M.: HICUM/Level0 - a simplified compact bipolar transistor model Bipolar/BiCMOS Circuits and Technology Meeting, 2002. Proceedings of the 2002, 112115.
[5]Bo, Han.; Shoulin, Li.; Jiali, Cheng.; Qiuyan, Yin.; Jianjun, Gao.: MEXTRAM model based SiGe HBT large-signal modeling. Journal of Semiconductors 2010, 31 (31), 104004-1104004-6.
[6]Xiong, A. et al. : An electrothermal model of high power HBTs for high efficiency L/S band amplifiers, In Microwave Integrated Circuit Conf., 2008, 318321.
[7]Jardel, O. et al. : An electrothermal model for GaInP/GaAs power HBTs with enhanced convergence capabilities, In European Microwave Integrated Circuits Conf., 2006, 296299.
[8]Decoutere, S. et al. : Advanced process modules and architectures for half-terahertz SiGe:C HBTs, In Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), 2009, 916.
[9]Paasschens, J.C.J.; Toorn, R.V.D.; Kloosterman, W.: The Mextram Bipolar Transistor Model level 504.6. Koninklijke Philips Electronics NV 2000/2005, March 2005.
[10]Schroeter, M.: RF–Modeling of Bipolar Transistors with HICUM, Chair for Electron Devices and Integrated Circuits, Lausanne University of Technology, Dresden, Germany, 2000.
[11]El Rafei, A.; Sommet, R.; Quere, R.: Electrical measurement of the thermal impedance of bipolar transistors. IEEE Electron Device Lett., 31 (9) (2010), 939941.
[12]Sahoo, A.K.; Fregonese, S.; Zimmer, T.; Malbert, N.: Thermal impedance modelling of sige hbts from low frequency small signal measurements. IEEE Electron Device Lett., 32 (2011), 119121.
[13]Saleh, A. et al. : 40 ns pulsed I/V setup and measurement method applied to InP HBT characterisation. Electron. Lett., 45 (2009), 286287.
[14]El Rafei, A. et al. : DC (10 Hz) to RF (40 GHz) output conduction extraction by S-parameters measurements for in-depth characterization of AlInN/GaN HEMTS, focusing on low frequency dispersion effects, In EuMW2011, Manchester, October 2011, 58.
[15]Reveyrand, T.; Mallet, A.; Nebus, J.M.; Vanden Bossche, M.: Calibrated measurements of waveforms at internal nodes of MMICs with a LSNA and high impedance probes, In 62nd ARFTG Conf. Digest, December 2003, 7176.


Related content

Powered by UNSILO

Compact RF non-linear electro thermal model of SiGe HBT for the design of broadband ADC's

  • Alaa Saleh (a1), Abdel Kader El Rafei (a1), Mountakha Dieng (a1), Tibault Reveyrand (a1), Raphael Sommet (a1), Jean-Michel Nebus (a1) and Raymond Quere (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.