Skip to main content

Microwave dielectric stepped-index flat lens antenna

  • Hernan Barba Molina (a1) and Jan Hesselbarth (a1)

Dielectric stepped-index flat lens antennas for operation at 12 GHz are presented. A brick-shaped dielectric with a permittivity profile optimized for focusing is sandwiched between the metallic plates of an open-ended parallel-plate waveguide. A tapered slot antenna is placed at the focal point of the dielectric lens, thereby creating antennas with high directivity of 16.8 and 15.8 dBi, respectively. In the two versions of the antenna, the parallel-plate waveguide operates in TEM-mode and in the first higher-order TE-mode, respectively. The dielectric profile is realized by appropriate mixtures of alumina ceramic powder and microscopic hollow glass spheres, realizing permittivity ranging from εrel = 1.31 to εrel = 3.24. The design of the complete antennas is based on geometrical optics followed by optimizations with a full-wave electromagnetic solver. Measurements show good agreement with simulations.

Corresponding author
Corresponding author: H. Barba Molina Email:
Hide All
[1] Thornton, J.; Huang, K.-C.: Modern Lens Antennas for Communications Engineering, John Wiley & Sons, Hoboken, NJ, 2013.
[2] Artemenko, A.; Maltsev, A.; Maslennikov, R.; Sevastyanov, A.; Ssorin, V.: Beam steerable quartz integrated lens antenna for 60 GHz frequency band, in Proc. Fifth Eur. Microwave Conf. on Antennas and Propagation (EuCAP), Rome, Italy, 2011, 758762.
[3] Artemenko, A.; Mozharovskiy, A.; Maltsev, A.; Maslennikov, R.; Sevastyanov, A.; Ssorin, V.: 2D electronically beam steerable integrated lens antennas for mmWave applications, in Proc. 42nd Eur. Microwave Conf. (EuMC), Amsterdam, The Netherlands, 2012, 213216.
[4] Karttunen, A.; Ala-Laurinaho, J.; Sauleau, R.; Räisänen, A.V.: Reduction of internal reflections in integrated lens antennas for beam-steering. Progr. Electromagn. Res., 134 (2013), 6378.
[5] Karttunen, A.; Säily, J.; Lamminen, A.E.; Ala-Laurinaho, J.; Sauleau, R.; Räisänen, A.V.: Using optimized eccentricity Rexolite lens for electrical beam steering with integrated aperture coupled patch array. Progr. Electromagn. Res. B, 44 (2012), 345365.
[6] Menzel, W.; Moebius, A.: Antenna concepts for millimeter-wave automotive radar sensors. Proc. IEEE 100, (7) (2012), 23722379.
[7] Yurduseven, O.; Cavallo, D.; Neto, A.: Wideband dielectric lens antenna with stable radiation patterns fed by coherent array of connected leaky slots. IEEE Trans. Antennas Propag., 62 (4) (2014), 18951902.
[8] Artemenko, A.; Mozharovskiy, A.; Maltsev, A.; Maslennikov, R.; Sevastyanov, A.; Ssorin, V.: Experimental characterization of E-band two-dimensional electronically beam-steerable integrated lens antennas. IEEE Antennas Wireless Propag. Lett., 12 (2013), 11881191.
[9] Filipovic, D.F.; Gauthier, G.P.; Raman, S.; Rebeiz, G.M.: Off-axis properties of silicon and quartz dielectric lens antennas. IEEE Trans. Antennas Propag., 45 (5) (1997), 760766.
[10] Luneburg, R.K.: Mathematical Theory of Optics, University of California Press, Berkeley, CA, 1964.
[11] Peeler, G.D.M.; Coleman, H.P.: Microwave stepped-index Luneberg lenses. IRE Trans. Antennas Propag., 6 (2) (1958), 202207.
[12] Yang, R.; Tang, W.; Hao, Y.: A broadband zone plate lens from transformation optics. Opt. Express, 19 (13) (2011), 1234812355.
[13] Imbert, M.; Romeu, J.; Jofre, L.: Design of a dielectric flat lens antenna for 60 GHz WPAN applications, in Proc. IEEE Antennas and Propagation Soc. Int. Symp. (APSURSI), Orlando, FL, July 2013, 1164–1165.
[14] Rondineau, S.; Himdi, M.; Sorieux, J.: A sliced spherical Luneburg lens. IEEE Antennas Wireless Propag. Lett., 2 (1) (2003), 163166.
[15] Liang, M.; Ng, W.-R.; Chang, K.; Gbele, K.; Gehm, M.E.; Xin, H.: A 3-D Luneburg lens antenna fabricated by polymer jetting rapid prototyping. IEEE Trans. Antennas Propag., 62 (4) (2014), 17991807.
[16] Merlet, H.; Le Bars, P.; Lafond, O.; Himdi, M.: Manufacturing method of a dielectric material and its applications to millimeter-waves beam forming antenna systems, U.S. Patent WO2013083794, June 13, 2013.
[17] Bor, J.; Lafond, O.; Merlet, H.; Le Bars, P.; Himdi, M.: Technological process to control the foam dielectric constant application to microwave components and antennas. IEEE Trans. Compon. Packag. Technol., 4 (5) (2014), 938942.
[18] Bor, J.; Fuchs, B.; Lafond, O.; Himdi, M.: Flat foam-based Mikaelian lens antenna for millimeter wave applications, in Proc. 44th Eur. Microwave Conf. (EuMC), Rome, Italy, 2014, 16401643.
[19] Bor, J.; Fuchs, B.; Lafond, O.; Himdi, M.: Design and characterization of a foam-based Mikaelian lens antenna in millimeter waves. Int. J. Microw. Wireless Technol., 7 (6) (2015), 769773.
[20] Hua, C.; Yang, N.; Wu, X.; Wu, W.: Millimeter-wave fan-beam antenna based on step-index cylindrical homogeneous lens. IEEE Antennas Wireless Propag. Lett., 11 (2012), 15121516.
[21] Ma, K.-P.; Itoh, T.: A new broadband coplanar waveguide to slotline transition, in IEEE MTT-S Int. Microwave Symp. Digest, Denver, CO, June 1997, vol. 3, 1627–1630.
[22] Sihvola, A.H.: Electromagnetic Mixing Formulas and Applications, IEE Press, London, UK, 1999.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Microwave and Wireless Technologies
  • ISSN: 1759-0787
  • EISSN: 1759-0795
  • URL: /core/journals/international-journal-of-microwave-and-wireless-technologies
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 19
Total number of PDF views: 103 *
Loading metrics...

Abstract views

Total abstract views: 534 *
Loading metrics...

* Views captured on Cambridge Core between 19th October 2016 - 21st March 2018. This data will be updated every 24 hours.