Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 28
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Hendershot, Megan L. Venditti, Jeremy G. Bradley, Ryan W. Kostaschuk, Ray A. Church, Michael Allison, Mead A. and Manville, Vern 2016. Response of low-angle dunes to variable flow. Sedimentology, Vol. 63, Issue. 3, p. 743.


    Houssais, Morgane and Jerolmack, Douglas J. 2016. Toward a unifying constitutive relation for sediment transport across environments. Geomorphology,


    Kaitna, Roland Palucis, Marisa C. Yohannes, Bereket Hill, Kimberly M. and Dietrich, William E. 2016. Effects of coarse grain size distribution and fine particle content on pore fluid pressure and shear behavior in experimental debris flows. Journal of Geophysical Research: Earth Surface, Vol. 121, Issue. 2, p. 415.


    Ruiz-Baier, Ricardo and Lunati, Ivan 2016. Mixed finite element – discontinuous finite volume element discretization of a general class of multicontinuum models. Journal of Computational Physics, Vol. 322, p. 666.


    Hanotin, C. Kiesgen de Richter, S. Michot, L. J. and Marchal, Ph. 2015. Viscoelasticity of vibrated granular suspensions. Journal of Rheology, Vol. 59, Issue. 1, p. 253.


    Iverson, R.M. George, D.L. Allstadt, K. Reid, M.E. Collins, B.D. Vallance, J.W. Schilling, S.P. Godt, J.W. Cannon, C.M. Magirl, C.S. Baum, R.L. Coe, J.A. Schulz, W.H. and Bower, J.B. 2015. Landslide mobility and hazards: implications of the 2014 Oso disaster. Earth and Planetary Science Letters, Vol. 412, p. 197.


    Marzougui, Donia Chareyre, Bruno and Chauchat, Julien 2015. Microscopic origins of shear stress in dense fluid–grain mixtures. Granular Matter, Vol. 17, Issue. 3, p. 297.


    Morris, Jeffrey 2015. Handbook of Granular Materials.


    Pastor, M. Blanc, T. Haddad, B. Drempetic, V. Morles, Mila Sanchez Dutto, P. Stickle, M. Martin Mira, P. and Merodo, J. A. Fernández 2015. Depth Averaged Models for Fast Landslide Propagation: Mathematical, Rheological and Numerical Aspects. Archives of Computational Methods in Engineering, Vol. 22, Issue. 1, p. 67.


    Pastor, M. Martin Stickle, M. Dutto, P. Mira, P. Fernández Merodo, J. A. Blanc, T. Sancho, S. and Benítez, A. S. 2015. A viscoplastic approach to the behaviour of fluidized geomaterials with application to fast landslides. Continuum Mechanics and Thermodynamics, Vol. 27, Issue. 1-2, p. 21.


    Denlinger, Roger P. 2014. Simulation of Initiation, Transport, and Deposition of Granular Avalanches: Current Progress and Future Challenges. Procedia IUTAM, Vol. 10, p. 363.


    Iverson, R. M. and George, D. L. 2014. A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 470, Issue. 2170, p. 20130819.


    Andreini, Nicolas Ancey, Christophe and Epely-Chauvin, Gaël 2013. Granular suspension avalanches. II. Plastic regime. Physics of Fluids, Vol. 25, Issue. 3, p. 033302.


    Chalmers, N. and Lorin, E. 2013. On the numerical approximation of one-dimensional nonconservative hyperbolic systems. Journal of Computational Science, Vol. 4, Issue. 1-2, p. 111.


    Andrade, José E. Chen, Qiushi Le, Phong H. Avila, Carlos F. and Matthew Evans, T. 2012. On the rheology of dilative granular media: Bridging solid- and fluid-like behavior. Journal of the Mechanics and Physics of Solids, Vol. 60, Issue. 6, p. 1122.


    Dijksman, Joshua A. Rietz, Frank Lőrincz, Kinga A. van Hecke, Martin and Losert, Wolfgang 2012. Invited Article: Refractive index matched scanning of dense granular materials. Review of Scientific Instruments, Vol. 83, Issue. 1, p. 011301.


    Han, Zhi-Hong and Liu, Zuo-Min 2012. Effect of a two-phase wedge-sliding model on the ingredient drift of a stable mixed fluid and its computing method. Chinese Physics B, Vol. 21, Issue. 8, p. 084701.


    Metzger, Bloen and Butler, Jason E. 2012. Clouds of particles in a periodic shear flow. Physics of Fluids, Vol. 24, Issue. 2, p. 021703.


    Pudasaini, Shiva P. 2012. A general two-phase debris flow model. Journal of Geophysical Research: Earth Surface, Vol. 117, Issue. F3, p. n/a.


    Berzi, D. di Prisco, C. G. and Vescovi, D. 2011. Constitutive relations for steady, dense granular flows. Physical Review E, Vol. 84, Issue. 3,


    ×
  • Journal of Fluid Mechanics, Volume 633
  • August 2009, pp. 115-135

A two-phase flow description of the initiation of underwater granular avalanches

  • MICKAËL PAILHA (a1) and OLIVIER POULIQUEN (a1)
  • DOI: http://dx.doi.org/10.1017/S0022112009007460
  • Published online: 25 August 2009
Abstract

A theoretical model based on a depth-averaged version of two-phase flow equations is developed to describe the initiation of underwater granular avalanches. The rheology of the granular phase is based on a shear-rate-dependent critical state theory, which combines a critical state theory proposed by Roux & Radjai (1998), and a rheological model recently proposed for immersed granular flows. Using those phenomenological constitutive equations, the model is able to describe both the dilatancy effects experienced by the granular skeleton during the initial deformations and the rheology of wet granular media when the flow is fully developed. Numerical solutions of the two-phase flow model are computed in the case of a uniform layer of granular material fully immersed in a liquid and suddenly inclined from horizontal. The predictions are quantitatively compared with experiments by Pailha, Nicolas & Pouliquen (2008), who have studied the role of the initial volume fraction on the dynamics of underwater granular avalanches. Once the rheology is calibrated using steady-state regimes, the model correctly predicts the complex transient dynamics observed in the experiments and the crucial role of the initial volume fraction. Quantitative predictions are obtained for the triggering time of the avalanche, for the acceleration of the layer and for the pore pressure.

Copyright
Corresponding author
Email address for correspondence: mickael.pailha@etu.univ-provence.fr
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

C. Ancey , P. Coussot & P. Evesque 1999 A theoretical framework for granular suspensions in a steady simple shear flow. J. Rheol. 43, 16731699.

D. Berzi & J. T. Jenkins 2008 bApproximate analytical solutions in a model for highly concentrated granular-fluid flows. Phys. Rev. E 78, 011304.

J. F. Brady & G. Bossis 1988 Stokesian dynamics. Ann. Rev. Fluid Mech. 20, 111157.

S. Courrech du Pont , P. Gondret , B. Perrin & M. Rabaud 2003 Granular avalanches in fluids. Phys. Rev. Lett. 90, 044301.

F. Da Cruz , S. Emam , M. Prochnow , J. N. Roux & F. Chevoir 2005. Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72, 021309.

Y. Forterre & O. Pouliquen 2008 Flow of dense granular media. Ann. Rev. Fluid Mech. 40, 124.

GDR MiDi2004 On dense granular flows. Eur. Phys. J. E 14, 341365.

J. C. Géminard , W. Losert & J. P. Gollub 1999 Frictional mechanics of wet granular material. Phys. Rev. E 59, 58815890.

M. A. Hampton , H. J. Lee & J. Locat 1996 Submarine landslides. Rev. Geophys. 34, 3359.

N. Huang , G. Ovarlez , F. Bertrand , S. Rodts , P. Coussot & D. Bonn 2005 Flow of wet granular materials. Phys. Rev. Lett. 94, 028301

T. Iistad , J. G. Marr , A. Elverhoi & C. B. Harbitz 2004 Laboratory studies of subaqueous debris flows by measurements of pore fluid pressure and total stress. Marine Geol. 213, 403414.

J. Imran , G. Parker , J. Locat & H. Lee 2001 One-dimensional numerical model of muddy subaqueous and subaerial debris flows. J. Hydr. Engng 127, 959968.

R. M. Iverson 1985 A constitutive equation for mass–movement behaviour. J. Geol. 93, 143160.

R. M. Iverson 1997 The physics of debris flows. Rev. Geophys. 35, 245296.

R. M. Iverson 2000 Landslide triggering by rain infiltration. Water Resour. Res. 36, 18971910.

R. M. Iverson 2005 Regulation of landslide motion by dilatancy and pore pressure feedback. J. Geophys. Res. 110, F02015.

R. M. Iverson & R. P. Denlinger 2001 aFlow of variably fluidized granular masses across three-dimensional terrain 1. Coulomb Mixture theory. J. Geophys. Res. 106, 537552.

R. M. Iverson & R. G. Lahusen 1989 Dynamic pore pressure fluctuations in rapidly shearing granular materials. Science 246, 796798.

R. M. Iverson , M. E. Reid , N. R. Iverson , R. G. Lahusen , M. Logan , J. E. Mann , & D. L. Brien 2000 Acute sensitivity of landslide rates to initial porosity. Science 290, 513516.

R. Jackson 1997 Locally averaged equations of motion for a mixture of identical spherical particles and a Newtonian fluid. Ch. Engng Sci. 52, 24572469.

P. Jop , Y. Forterre & O. Pouliquen 2006 A constitutive law for dense granular flows. Nature 441, 727730.

F. Legros 2002. The mobility of long-runout landslides. Engng Geol. 63, 301331.

J. J. Major & R. M. Iverson 1999 Debris-flow deposition: effects of pore-fluid pressure ad friction concentrated at flow margins. Geol. Soc. Am. Bull. 111, 14241434.

J. F. Morris & F. Boulay 1999 Curvilinear flows of noncolloidal suspensions: the role of normal stresses. J. Rheol. 43, 12131237.

Y. Okura , H. Kitahara , H. Ochiai T. Sammori & A. Kawanami 2002 Landslide fluidization process by flume experiments. Engng Geol. 66, 6578.

M. Pailha , M. Nicolas & O. Pouliquen 2008 Initiation of underwater granular avalanches: influence of the initial volume fraction. Phys. Fluids 20, 111701.

M. Pastor , M. Quecedo , E. González , M. I. Herreros , J. A. Fernández Merodo & P. Mira 2004 Simple approximation to bottom friction for bingham fluid depth integrated models. J. Hydr. Engrg 130, 149155.

E. B. Pitman & L. Le 2005 A two-fluid model for avalanches and debris flows. Phil. Trans. R. Soc. A 363, 15731601.

J. R. Rice 1975 On the stability of dilatant hardening for saturated rock masses. J. Geophys. Res. 80, 15311536.

J. W. Rudnicki 1984 Effects of dilatant hardening on the development of concentrated shear deformation in fissured rock masses. J. Geophys. Res. 89, 92599270.

D. G. Schaeffer & R. Iverson 2008 Steady and intermittent slipping in a model of landslide motion regulated by pore-pressure feedback. SIAM Appl. Math. 69, 768786.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax