Hostname: page-component-6b989bf9dc-md2j5 Total loading time: 0 Render date: 2024-04-12T02:01:40.746Z Has data issue: false hasContentIssue false

Controlled impact of a disk on a water surface: cavity dynamics

Published online by Cambridge University Press:  25 August 2009

RAYMOND BERGMANN
Affiliation:
Department of Applied Physics and J. M. Burgers Centre for Fluid Dynamics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
DEVARAJ VAN DER MEER*
Affiliation:
Department of Applied Physics and J. M. Burgers Centre for Fluid Dynamics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
STEPHAN GEKLE
Affiliation:
Department of Applied Physics and J. M. Burgers Centre for Fluid Dynamics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
ARJAN VAN DER BOS
Affiliation:
Department of Applied Physics and J. M. Burgers Centre for Fluid Dynamics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
DETLEF LOHSE
Affiliation:
Department of Applied Physics and J. M. Burgers Centre for Fluid Dynamics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
*
Email address for correspondence: d.vandermeer@utwente.nl

Abstract

In this paper we study the transient surface cavity which is created by the controlled impact of a disk of radius h0 on a water surface at Froude numbers below 200. The dynamics of the transient free surface is recorded by high-speed imaging and compared to boundary integral simulations giving excellent agreement. The flow surrounding the cavity is measured with high-speed particle image velocimetry and is found to also agree perfectly with the flow field obtained from the simulations.

We present a simple model for the radial dynamics of the cavity based on the collapse of an infinite cylinder. This model accounts for the observed asymmetry of the radial dynamics between the expansion and the contraction phases of the cavity. It reproduces the scaling of the closure depth and total depth of the cavity which are both found to scale roughly as ∝ Fr1/2 with a weakly Froude-number-dependent prefactor. In addition, the model accurately captures the dynamics of the minimal radius of the cavity and the scaling of the volume Vbubble of air entrained by the process, namely, Vbubble/h03∝(1 + 0.26Fr1/2)Fr1/2.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aristoff, J. M. & Bush, J. W. M. 2009 Water entry of small hydrophobic spheres. J. Fluid Mech. 619, 4578.CrossRefGoogle Scholar
Bergmann, R., Stijnman, M., Sandtke, M., van der Meer, D., Prosperetti, A. & Lohse, D. 2006 Giant bubble collapse. Phys. Rev. Lett. 96, 154505/1–4.CrossRefGoogle Scholar
Caballero, G., Bergmann, R., van der Meer, D., Prosperetti, A. & Lohse, D. 2007 Role of air in granular jet formation. Phys. Rev. Lett. 99, 018001/1–4.CrossRefGoogle ScholarPubMed
Chen, A. & Basaran, O. 2002 A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production. Phys. Fluids 14, L1.CrossRefGoogle Scholar
Duclaux, V., Caillé, F., Duez, C., Ybert, C., Bocquet, L. & Clanet, C. 2007 Dynamics of transient cavities. J. Fluid Mech. 591, 119.CrossRefGoogle Scholar
Fedorchenko, A. & Wang, A.-B. 2004 On some common features of drop impact on liquid surfaces. Phys. Fluids 16, 13491365.CrossRefGoogle Scholar
Gaudet, S. 1998 Numerical simulation of circular disks entering the free surface of a fluid. Phys. Fluids 10, 24892499.CrossRefGoogle Scholar
Gekle, S., van der Bos, A., Bergmann, R., van der Meer, D. & Lohse, D. 2008 Noncontinuous froude number scaling for the closure depth of a cylindrical cavity. Phys. Rev. Lett. 100, 084502/1–4.CrossRefGoogle ScholarPubMed
Gekle, S., Gordillo, J. M., van der Meer, D. & Lohse, D. 2009 High-speed jet formation after solid object impact. Phys. Rev. Lett. 102, 034502/1–4.CrossRefGoogle ScholarPubMed
Gilbarg, D. & Anderson, R. A. 1948 Influence of atmospheric pressure on the phenomena accompanying the entry of spheres into water. J. Appl. Phys. 19, 127139.CrossRefGoogle Scholar
Glasheen, J. W. & McMahon, T. A. 1996 A hydrodynamic model of locomotion in the basilisk lizard. Nature 380, 340342.CrossRefGoogle Scholar
de Jong, J., de Bruin, G., Reinten, H., van den Berg, M., Wijshoff, H., Versluis, M. & Lohse, D. 2006 a Air entrapment in piezo-driven inkjet printheads. J. Acoust. Soc. Am. 120, 12571265.CrossRefGoogle Scholar
de Jong, J., Jeurissen, R., Borel, H., van den Berg, M., Wijshoff, H., Reinten, H., Versluis, M., Prosperetti, A. & Lohse, D. 2006 b Entrapped air bubbles in piezo-driven inkjet printing: their effect on the droplet velocity. Phys. Fluids 18, 121511121517.CrossRefGoogle Scholar
Le, H. P. 1998 Progress and trends in ink-jet printing technology. J. Imag. Sci. Tech. 42, 4962.CrossRefGoogle Scholar
Lee, M., Longoria, R. & Wilson, D. 1997 Cavity dynamics in high-speed water entry. Phys. Fluids 9, 540550.CrossRefGoogle Scholar
Liow, J.-L., Morton, D., Guerra, A. & Grey, N. 1996 Dynamics of splash formation in gas injected systems. In Howard Worner International Symposium on Injection in Pyrometallurgy (ed. Nilmani, M. & Lehner, T.), pp. 137–148.Google Scholar
Lohse, D., Bergmann, R., Mikkelsen, R., Zeilstra, C., van der Meer, D., Versluis, M., van der Weele, K., van der Hoef, M. & Kuipers, H. 2004 Impact on soft sand: void collapse and jet formation. Phys. Rev. Lett. 93, 198003/1–4.CrossRefGoogle ScholarPubMed
Morton, D., Liow, J.-L. & Rudman, M. 2000 An investigation of the flow regimes resulting from splashing drops. Phys. Fluids 12, 747763.CrossRefGoogle Scholar
Oguz, H. & Prosperetti, A. 1990 Bubble entrainment by the impact of drops on liquid surfaces. J. Fluid Mech. 219, 143179.CrossRefGoogle Scholar
Oguz, H. N. & Prosperetti, A. 1993 Dynamics of bubble-growth and detachment from a needle. J. Fluid Mech. 257, 111145.CrossRefGoogle Scholar
Oguz, H. N., Prosperetti, A. & Kolaini, A. R. 1995 Air entrapment by a falling water mass. J. Fluid Mech. 294, 181207.CrossRefGoogle Scholar
Power, H. & Wrobel, L. C. 1995 Boundary Integral Methods in Fluid Mechanics. WIT Press.Google Scholar
Prosperetti, A. 2002 Drop Surface Interactions. CISM Courses and Lectures No. 456. Springer.Google Scholar
Prosperetti, A., Crum, L. & Pumphrey, H. 1989 Underwater noise of rain. J. Geophys. Res. 94, 32553259.CrossRefGoogle Scholar
Prosperetti, A. & Oguz, H. 1997 Air entrainment upon liquid impact. Phil. Trans. R. Soc. Lond. A 355, 491506.CrossRefGoogle Scholar
Rein, M. 1993 Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12, 6193.CrossRefGoogle Scholar
Royer, J., Corwin, E., Flior, A., Cordero, M.-L., Rivers, M., Eng, P. & Jaeger, H. 2005 Formation of granular jets observed by high-speed X-ray radiography. Nat. Phys. 1, 164167.CrossRefGoogle Scholar
Thoroddsen, S. T., Etoh, T. G. & Takehara, K. 2007 Experiments on bubble pinch-off. Phys. Fluids 19, 042101042129.CrossRefGoogle Scholar
Thoroddsen, S. & Shen, A. 2001 Granular jets. Phys. Fluids 13, 46.CrossRefGoogle Scholar
Worthington, A. M. 1908 A Study of Splashes. Longman and Green.Google Scholar
Worthington, A. M. & Cole, R. S. 1897 Impact with a liquid surface, studied by the aid of instantaneous photography. Phil. Trans. R. Soc. Lond. A 189, 137.Google Scholar