Skip to main content Accessibility help
×
Home

Experiments on a jet in a crossflow in the low-velocity-ratio regime

Published online by Cambridge University Press:  29 January 2019


L. Klotz
Affiliation:
Institute of Science and Technology, Am Campus 1, 3400 Klosterneuburg, Austria Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Nowowiejska 24, 00-665 Warsaw, Poland
K. Gumowski
Affiliation:
Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Nowowiejska 24, 00-665 Warsaw, Poland
J. E. Wesfreid
Affiliation:
Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Sorbonne Université, Université Paris Diderot, Sorbonne Paris Cité, 75005 Paris, France
Corresponding
E-mail address:

Abstract

The hairpin instability of a jet in a crossflow (JICF) for a low jet-to-crossflow velocity ratio is investigated experimentally for a velocity ratio range of $R\in (0.14,0.75)$ and crossflow Reynolds numbers $Re_{D}\in (260,640)$ . From spectral analysis we characterize the Strouhal number and amplitude of the hairpin instability as a function of $R$ and $Re_{D}$ . We demonstrate that the dynamics of the hairpins is well described by the Landau model, and, hence, that the instability occurs through Hopf bifurcation, similarly to other hydrodynamical oscillators such as wake behind different bluff bodies. Using the Landau model, we determine the precise threshold values of hairpin shedding. We also study the spatial dependence of this hydrodynamical instability, which shows a global behaviour.


Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below.

References

Acarlar, M. S. & Smith, C. R. 1987a A study of hairpin vortices in a laminar boundary layer. Part 1. Hairpin vortices generated by a hemisphere protuberance. J. Fluid Mech. 175, 141.10.1017/S0022112087000272CrossRefGoogle Scholar
Acarlar, M. S. & Smith, C. R. 1987b A study of hairpin vortices in a laminar boundary layer. Part 2. Hairpin vortices generated by fluid injection. J. Fluid Mech. 175, 4383.10.1017/S0022112087000284CrossRefGoogle Scholar
Bidan, G. & Nikitopoulos, D. E. 2013 On steady and pulsed low-blowing-ratio transverse jets. J. Fluid Mech. 714, 393433.10.1017/jfm.2012.482CrossRefGoogle Scholar
Bobinski, T., Goujon-Durand, S. & Wesfreid, J. E. 2014 Instabilities in the wake of a circular disk. Phys. Rev. E 89 (5), 053021.Google ScholarPubMed
Bucci, M. A., Puckert, D. K., Andriano, C., Loiseau, J.-Ch., Cherubini, S., Robinet, J.-Ch. & Rist, U. 2018 Roughness-induced transition by quasi-resonance of a varicose global mode. J. Fluid Mech. 836, 167191.10.1017/jfm.2017.791CrossRefGoogle Scholar
Cambonie, T. & Aider, J.-L. 2014 Transition scenario of the round jet in crossflow topology at low velocity ratios. Phys. Fluids 26 (8), 084101.10.1063/1.4891850CrossRefGoogle Scholar
Camussi, R., Guj, G. & Stella, A. 2002 Experimental study of a jet in a crossflow at very low Reynolds number. J. Fluid Mech. 454, 113144.10.1017/S0022112001007005CrossRefGoogle Scholar
Chauvat, G., Peplinski, A., Hanifi, A. & Henningson, D. S. 2017 Global Stability of a Jet in Cross-Flow: Effects of Jet Inflow. Stockholm, Sweden: 16th European Turbulence Conference.Google Scholar
Davitian, J., Getsinger, D., Hendrickson, C. & Karagozian, A. R. 2010 Transition to global instability in transverse-jet shear layers. J. Fluid Mech. 661, 294315.10.1017/S0022112010003046CrossRefGoogle Scholar
Getsinger, D. R., Gevorkyan, L., Smith, O. I. & Karagozian, A. R. 2014 Structural and stability characteristics of jets in crossflow. J. Fluid Mech. 760, 342367.10.1017/jfm.2014.605CrossRefGoogle Scholar
Gevorkyan, L., Shoji, T., Peng, W. Y. & Karagozian, A. R. 2018 Influence of the velocity field on scalar transport in gaseous transverse jets. J. Fluid Mech. 834, 173219.10.1017/jfm.2017.621CrossRefGoogle Scholar
Gopalan, S., Abraham, B. M. & Katz, J. 2004 The structure of a jet in cross flow at low velocity ratios. Phys. Fluids 16 (6), 20672087.10.1063/1.1697397CrossRefGoogle Scholar
Goujon-Durand, S., Jenffer, P. & Wesfreid, J. E. 1994 Downstream evolution of the Bénard-von Kármán instability. Phys. Rev. E 50 (1), 308313.Google ScholarPubMed
Gumowski, K., Miedzik, J., Goujon-Durand, S., Jenffer, P. & Wesfreid, J. E. 2008 Transition to a time-dependent state of fluid flow in the wake of a sphere. Phys. Rev. E 77 (5), 055308.Google Scholar
Ilak, M., Schlatter, P., Bagheri, S. & Henningson, D. S. 2012 Bifurcation and stability analysis of a jet in cross-flow: onset of global instability at a low velocity ratio. J. Fluid Mech. 696, 94121.10.1017/jfm.2012.10CrossRefGoogle Scholar
Iyer, P. S. & Mahesh, K. 2016 A numerical study of shear layer characteristics of low-speed transverse jets. J. Fluid Mech. 790, 275307.10.1017/jfm.2016.7CrossRefGoogle Scholar
Johnson, T. A. & Patel, V. C. 1999 Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378, 1970.10.1017/S0022112098003206CrossRefGoogle Scholar
Jovanović, M. B., de Lange, H. C. & van Steenhoven, A. A. 2008 Effect of hole imperfection on adiabatic film cooling effectiveness. Intl J. Heat Fluid Flow 29 (2), 377386.10.1016/j.ijheatfluidflow.2007.11.008CrossRefGoogle Scholar
Karagozian, A. R. 2010 Transverse jets and their control. Prog. Energy Combust. Sci. 36 (5), 531553.10.1016/j.pecs.2010.01.001CrossRefGoogle Scholar
Karagozian, A. R. 2014 The jet in crossflow. Phys. Fluids 26 (10), 101303.10.1063/1.4895900CrossRefGoogle Scholar
Kelso, R. M. & Smits, A. J. 1995 Horseshoe vortex systems resulting from the interaction between a laminar boundary layer and a transverse jet. Phys. Fluids 7 (1), 153158.10.1063/1.868736CrossRefGoogle Scholar
Klotz, L., Goujon-Durand, S., Rokicki, J. & Wesfreid, J. E. 2014 Experimental investigation of flow behind a cube for moderate Reynolds numbers. J. Fluid Mech. 750, 7398.10.1017/jfm.2014.236CrossRefGoogle Scholar
Klotz, L. & Wesfreid, J. E. 2017 Experiments on transient growth of turbulent spots. J. Fluid Mech. 829, R4.10.1017/jfm.2017.614CrossRefGoogle Scholar
Lim, T. T., New, T. H. & Luo, S. C. 2001 On the development of large-scale structures of a jet normal to a cross flow. Phys. Fluids 13 (3), 770775.10.1063/1.1347960CrossRefGoogle Scholar
Mahesh, K. 2013 The interaction of jets with crossflow. Annu. Rev. Fluid Mech. 45 (1), 379407.10.1146/annurev-fluid-120710-101115CrossRefGoogle Scholar
Margason, R. J.1993 Fifty years of jet in cross flow research. AGARD-CP 534, Comp. and Exp. Assess. Jets in Cross Flow.Google Scholar
Mathis, C., Provansal, M. & Boyer, L. 1984 The Benard-Von Karman instability: an experimental study near the threshold. J. Phys. Lett. 45 (10), 483491.10.1051/jphyslet:019840045010048300CrossRefGoogle Scholar
Megerian, S., Davitian, J., Alves, L. S. De B. & Karagozian, A. R. 2007 Transverse-jet shear-layer instabilities. Part 1. Experimental studies. J. Fluid Mech. 593, 93129.10.1017/S0022112007008385CrossRefGoogle Scholar
Ormires, D. & Provansal, M. 1999 Transition to turbulence in the wake of a sphere. Phys. Rev. Lett. 83 (1), 8083.10.1103/PhysRevLett.83.80CrossRefGoogle Scholar
Peplinski, A., Schlatter, P. & Henningson, D. S. 2015a Global stability and optimal perturbation for a jet in cross-flow. Eur. J. Mech. (B/Fluids) 49 (Part B), 438447.10.1016/j.euromechflu.2014.06.001CrossRefGoogle Scholar
Peplinski, A., Schlatter, P. & Henningson, D. S. 2015b Investigations of stability and transition of a jet in crossflow using DNS. In Instability and Control of Massively Separated Flows, Fluid Mechanics and Its Applications, vol. 107, pp. 718. Springer.Google Scholar
Regan, M. A. & Mahesh, K. 2017 Global linear stability analysis of jets in cross-flow. J. Fluid Mech. 828, 812836.10.1017/jfm.2017.489CrossRefGoogle Scholar
Sau, R. & Mahesh, K. 2008 Dynamics and mixing of vortex rings in crossflow. J. Fluid Mech. 604, 389409.10.1017/S0022112008001328CrossRefGoogle Scholar
Schlatter, P., Bagheri, S. & Henningson, D. S. 2011 Self-sustained global oscillations in a jet in crossflow. Theor. Comput. Fluid Dyn. 25 (1–4), 129146.10.1007/s00162-010-0199-1CrossRefGoogle Scholar
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer.10.1007/978-1-4613-0185-1CrossRefGoogle Scholar
Wesfreid, J. E., Goujon-Durand, S. & Zielinska, B. J. A. 1996 Global mode behavior of the streamwise velocity in wakes. J. Phys. (Paris) II 6 (10), 13431357.Google Scholar
Zielinska, B. J. A. & Wesfreid, J. E. 1995 On the spatial structure of global modes in wake flow. Phys. Fluids 7 (6), 14181424.10.1063/1.868529CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 10
Total number of PDF views: 292 *
View data table for this chart

* Views captured on Cambridge Core between 29th January 2019 - 3rd December 2020. This data will be updated every 24 hours.

Hostname: page-component-b4dcdd7-z76xg Total loading time: 0.261 Render date: 2020-12-03T21:18:38.895Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Thu Dec 03 2020 20:59:12 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Experiments on a jet in a crossflow in the low-velocity-ratio regime
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Experiments on a jet in a crossflow in the low-velocity-ratio regime
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Experiments on a jet in a crossflow in the low-velocity-ratio regime
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *