Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-ms7nj Total loading time: 0.332 Render date: 2022-08-16T17:52:06.381Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Goldilocks mixing in oceanic shear-induced turbulent overturns

Published online by Cambridge University Press:  04 October 2021

A. Mashayek
Affiliation:
Department of Civil and Environmental Engineering, Imperial College London, LondonSW7 2BX, UK
C.P. Caulfield
Affiliation:
BP Institute for Multiphase Flow, University of Cambridge, Madingley Rise, Madingley Road, CambridgeCB3 0EZ, UK Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Rd, CambridgeCB3 0WA, UK
M.H. Alford*
Affiliation:
Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037USA
*
Email address for correspondence: mashayek@ic.ac.uk

Abstract

We present a new, simple and physically motivated parameterization, based on the ratio of Thorpe and Ozmidov scales, for the irreversible turbulent flux coefficient $\varGamma _{\mathcal {M}}= {\mathcal {M}}/\epsilon$, i.e. the ratio of the irreversible rate ${\mathcal {M}}$ at which the background potential energy increases in a stratified flow due to macroscopic motions to the dissipation rate of turbulent kinetic energy $\epsilon$. Our parameterization covers all three key phases (crucially, in time) of a shear-induced stratified turbulence life cycle: the initial, ‘hot’ growing phase, the intermediate energetically forced phase and the final ‘cold’ fossilization decaying phase. Covering all three phases allows us to highlight the importance of the intermediate one, to which we refer as the ‘Goldilocks’ phase due to its apparently optimal (and so neither too hot nor too cold, but just right) balance, in which energy transfer from background shear to the turbulent mixing is most efficient. The value of $\varGamma _{\mathcal {M}}$ is close to 1/3 during this phase, which we demonstrate appears to be related to an adjustment towards a critical or marginal Richardson number for sustained turbulence ${\sim }0.2\text {--}0.25$. Importantly, although buoyancy effects are still significant at leading order for the turbulent dynamics during this intermediate phase, the marginal balance in the flow ensures that the turbulent mixing of the (density) scalar is nevertheless effectively ‘locked’ to the turbulent mixing of momentum. We present supporting evidence for our parameterization through comparison with six oceanographic datasets that span various turbulence generation regimes and a wide range of geographical location and depth. Using these observations, we highlight the significance of parameterizing an inherently variable flux coefficient for capturing the turbulent flux associated with rare energetic, yet fundamentally shear-driven (and so not strongly stratified) overturns that make a disproportionate contribution to the total mixing. We also highlight the importance of representation of young turbulent patches in the parameterization for connecting the small scale physics to larger scale applications of mixing such as ocean circulation and tracer budgets. Shear-induced turbulence is therefore central to irreversible mixing in the world's oceans, apparently even close to the seafloor, and it is critically important to appreciate the inherent time dependence and evolution of mixing events: history matters to mixing.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
3
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Goldilocks mixing in oceanic shear-induced turbulent overturns
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Goldilocks mixing in oceanic shear-induced turbulent overturns
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Goldilocks mixing in oceanic shear-induced turbulent overturns
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *