Hostname: page-component-546b4f848f-hhr79 Total loading time: 0 Render date: 2023-06-04T14:12:00.744Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

A study on boundary-layer transition induced by free-stream turbulence

Published online by Cambridge University Press:  15 July 2010

Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012, India
EAD, National Aerospace Laboratories, Bangalore 560017, India
Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012, India
Email address for correspondence:


Boundary-layer transition at different free-stream turbulence levels has been investigated using the particle-image velocimetry technique. The measurements show organized positive and negative fluctuations of the streamwise fluctuating velocity component, which resemble the forward and backward jet-like structures reported in the direct numerical simulation of bypass transition. These fluctuations are associated with unsteady streaky structures. Large inclined high shear-layer regions are also observed and the organized negative fluctuations are found to appear consistently with these inclined shear layers, along with highly inflectional instantaneous streamwise velocity profiles. These inflectional velocity profiles are similar to those in the ribbon-induced boundary-layer transition. An oscillating-inclined shear layer appears to be the turbulent spot-precursor. The measurements also enabled to compare the actual turbulent spot in bypass transition with the simulated one. A proper orthogonal decomposition analysis of the fluctuating velocity field is carried out. The dominant flow structures of the organized positive and negative fluctuations are captured by the first few eigenfunction modes carrying most of the fluctuating energy. The similarity in the dominant eigenfunctions at different Reynolds numbers suggests that the flow prevails its structural identity even in intermittent flows. This analysis also indicates the possibility of the existence of a spatio-temporal symmetry associated with a travelling wave in the flow.

Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Adrian, R. J., Christensen, K. T. & Liu, Z. C. 2000 a Analysis and interpretation of instantaneous turbulent velocity fields. Exp. Fluid 29, 275290.CrossRefGoogle Scholar
Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 b Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.CrossRefGoogle Scholar
Alfredsson, P. H. & Matsubara, M. 2000 Free-stream turbulence, streaky structures and transition in boundary layer flows. AIAA Paper 2000-2534.Google Scholar
Andersson, P., Berggren, M. & Henningson, D. S. 1999 Optimal disturbances and bypass transition in boundary layers. Phys. Fluids. 11, 134150.CrossRefGoogle Scholar
Andersson, P., Brandt, L., Bottaro, A. & Henningson, D. 2001 On the breakdown of boundary layer streaks. J. Fluid Mech. 428, 2960.CrossRefGoogle Scholar
Arnal, D. & Juillen, J. C. 1978 Contribution experimentale à l'ètude de la receptivitè d'une couche limite laminarire, à la turbulence de l'ecoulement general. Rap. Tech. 1/5018 AYD ONERA.Google Scholar
Asai, M., Minagawa, M. & Nishioka, M. 2002 The instability and breakdown of a near-wall low-speed streak. J. Fluid Mech. 455, 289314.CrossRefGoogle Scholar
Aubry, N., Guyonnet, R. & Lima, R. 1992 Spatio-temporal symmetries and bifurcations via bi-orthogonal decompositions. J. Nonlinear Sci. 2, 183215.CrossRefGoogle Scholar
Aubry, N., Holmes, P., Lumley, J. L. & Stone, E. 1988 The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192, 115173.CrossRefGoogle Scholar
Banerjee, A. S., Mandal, A. C. & Dey, J. 2006 Particle image velocimetry studies of an incipient spot in the Blasius boundary layer. Exp. Fluids 40, 928941.CrossRefGoogle Scholar
Berkooz, G., Holmes, P. & Lumley, J. L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539575.CrossRefGoogle Scholar
Blair, M. F. 1992 Boundary layer transition in accelerating flows with intense freestream turbulence: Part 1. Disturbances upstream of transition onset. Trans. ASME: J. Fluid Engng 144, 313321.Google Scholar
Brandt, L. & Henningson, D. S. 2002 Transition of streamwise streaks in zero-pressure-gradient boundary layers. J. Fluid Mech. 472, 229261.CrossRefGoogle Scholar
Brandt, L., Schlatter, P. & Henningson, D. S. 2004 Transition in boundary layers subject to free-stream turbulence. J. Fluid Mech. 517, 167198.CrossRefGoogle Scholar
Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A 4, 16371650.CrossRefGoogle Scholar
Cazemier, W., Verstappen, R. W. C. P. & Veldman, A. E. P. 1998 Proper orthogonal decomposition and low-dimensional models for driven cavity flows. Phys. Fluids 10, 16851699.CrossRefGoogle Scholar
Chong, M. S., Perry, A. E. & Cantwell, B. J. 1990 A general classification of three-dimensional flow fields. Phys. Fluids 2, 765777.CrossRefGoogle Scholar
Deane, E., Kevrekidis, I. G., Karniadakis, G. E. & Orszag, S. A. 1991 Low-dimensional models for complex geometry flows: application to grooved channels and circular cylinders. Phys. Fluids 3, 23372354.CrossRefGoogle Scholar
Dryden, H. L. 1936 Air flow in the boundary layer near a plate. Tech. Rep. 562. NASA.Google Scholar
Durbin, P. & Wu, X. 2007 Transition beneath vortical disturbances. Annu. Rev. Fluid Mech. 39, 107128.CrossRefGoogle Scholar
Elofsson, P. A., Kawakami, M. & Alfredsson, P. H. 1999 Experiments on the stability of streamwise streaks in plane Poiseuille flow. Phys. Fluids 11, 915930.CrossRefGoogle Scholar
Fransson, J. H. M., Matsubara, M. & Alfredsson, P. H. 2005 Transition induced by free-stream turbulence. J. Fluid Mech. 527, 125.CrossRefGoogle Scholar
Gunes, H., Liakopoulos, A. & Sahan, R. A. 1997 Low-dimensional description of oscillatory thermal convection: the small Prandtl number limit. Theor. Comput. Fluid Dyn. 9, 116.CrossRefGoogle Scholar
Gunes, H. & Rist, U. 2004 Proper orthogonal decomposition reconstruction of a transitional boundary layer with and without control. Phys. Fluids 16, 27632784.CrossRefGoogle Scholar
Hasan, N. & Sanghi, S. 2007 Proper orthogonal decomposition and low-dimensional modelling of thermally driven two-dimensional flow in a horizontal rotating cylinder. J. Fluid Mech. 573, 265295.CrossRefGoogle Scholar
Hernon, D., Walsh, E. J. & Mceligot, 2007 Experimental investigation into the routes to bypass transition and the shear-sheltering phenomenon. J. Fluid Mech. 591, 461479.CrossRefGoogle Scholar
Holmes, P., Lumley, J. L. & Berkooz, G. 1996 Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press.CrossRefGoogle Scholar
Inasawa, A., Lundell, F., Matsubara, M., Kohama, Y. & Alfredsson, P. H. 2003 Velocity statistics and flow structures observed in bypass transition using stereo PTV. Exp. Fluids 34, 242252.CrossRefGoogle Scholar
Jacobs, R. G. & Durbin, P. A. 2001 Simulations of bypass transition. J. Fluid Mech. 428, 185212.CrossRefGoogle Scholar
Kendall, J. M. 1985 Experimental study of disturbances produced in a pre-transitional laminar boundary layer by weak free stream turbulence. AIAA Paper 85-1695.Google Scholar
Kendall, J. M. 1990 Boundary layer receptivity to free-stream turbulence. AIAA Paper 90-1504.Google Scholar
Kendall, J. M. 1991 Studies on laminar boundary layer receptivity to free stream turbulence near a leading edge. In Boundary Layer Stability and Transition to Turbulence (ed. Reda, D. C., Reed, H. L. & Kobayashi, R.) vol. 114, pp. 2330. ASME-FED.Google Scholar
Kendall, J. M. 1998 Experiments on boundary layer receptivity to freestream turbulence. AIAA Paper 98-0530.Google Scholar
Klebanoff, P. S. 1971 Effect of freestream turbulence on the laminar boundary layer. Bull. Am. Phys. Soc. 10, 1323.Google Scholar
Klebanoff, P. S., Tidstrom, K. D. & Sargent, L. M. 1962 The three dimensional nature of boundary-layer instability. J. Fluid Mech. 12, 134.CrossRefGoogle Scholar
Kostas, J., Soria, J. & Chong, M. S. 2002 Particle image velocimetry measurements of a backward-facing step flow. Exp. Fluids 33, 838853.CrossRefGoogle Scholar
Krothapalli, A., Venkatakrishnan, L., Lourenco, L., Greska, B. & Elavarasan, R. 2003 Turbulence and noise suppression of a high-speed jet by water injection. J. Fluid Mech. 491, 131159.CrossRefGoogle Scholar
Kruse, N., Gunther, A. & Rohr, P. R. V. 2003 Dynamics of large-scale structures in turbulent flow over wavy wall. J. Fluid Mech. 485, 8796.CrossRefGoogle Scholar
Leventhal, L. & Reshotko, E. 1981 Preliminary experimental study of disturbances in a laminar boundary layer due to free stream turbulence. AIAA Paper 81-1224.Google Scholar
Liu, Z., Adrian, R. J. & Hanratty, T. J. 2001 Large-scale modes of turbulent channels flow: transport and structure. J. Fluid Mech. 448, 5380.CrossRefGoogle Scholar
Liu, Z.-C., Adrian, R. J. & Hanratty, T. J. 1994 Large-scale modes of turbulent channels flow: transport and structure. Phys. Fluids 6, 28152819.CrossRefGoogle Scholar
Lourenco, L. M. & Krothapalli, A. 2000 TRUE resolution PIV: a mesh-free second order accurate algorithm. In Proceedings of the International Conference in Applications of Lasers to Fluid Mechanics, Lisbon, Portugal.Google Scholar
Luchini, P. 2000 Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations. J. Fluid Mech. 404, 289309.CrossRefGoogle Scholar
Lumley, J. L. 1967 The structure of inhomogeneous turbulence. In Atmospheric Turbulence and Wave Propagation (ed. Yaglom, A. M. & Tatarski, V. I.), pp. 166178. Nauka.Google Scholar
Mandal, A. C. 2005 Particle image velocimetry (PIV) measurements in a low intermittency transitional flow. Master's thesis, Indian Institute of Science, Bangalore, India.Google Scholar
Mandal, A. C., Venkatakrishnan, L. & Dey, J. 2006 Spot-like structure in free-stream induced transitional flow. In 6th European Fluid Mechanics Conference, Stockholm, Sweden.Google Scholar
Mans, J., Kadijk, E. C., de Lange, H. C. & van Steenhoven, A. A. 2005 Breakdown in a boundary layer exposed to free-stream turbulence. Exp. Fluids 39, 10711083.CrossRefGoogle Scholar
Mans, J., de Lange, H. C. & van Steenhoven, A. A. 2007 Sinuous breakdown in a flat plate boundary layer exposed to free-stream turbulence. Phys. Fluids 19, 088101-1–088101-4.CrossRefGoogle Scholar
Matsubara, M. & Alfredsson, P. H. 2001 Disturbance growth in boundary layers subjected to free-stream turbulence. J. Fluid Mech. 430, 149169.CrossRefGoogle Scholar
Moreno, D., Krothapalli, A., Alkislar, M. B. & Lourenco, L. M. 2004 Low-dimensional model of a supersonic rectangular jet. Phys. Rev. E 69, 026304-1–026304-12.CrossRefGoogle ScholarPubMed
Morkovin, M. V. 1969 The many faces of transition. In Viscous Drag Reduction (ed. Wells, C. S.), pp. 131. Plenum Press.Google Scholar
Narasimha, R., Devasia, K. J., Gururani, G. & Narayanan, M. A. Badri 1984 Transitional intermittency in boundary layers subjected to pressure gradient. Exp. Fluids 2, 171176.CrossRefGoogle Scholar
Narasimha, R. & Prasad, S. N. 1994 Leading edge shape for flat plate boundary layer studies. Exp. Fluids 17, 358360.CrossRefGoogle Scholar
Nishioka, M., Asai, M. & Iida, S. 1981 Wall phenomena in the final stage of transition to turbulence. In Transition and Turbulence (ed. Meyer, R. E.), pp. 113126. Academic Press.CrossRefGoogle Scholar
Pedersen, J. M. & Meyer, K. E. 2002 POD analysis of flow structures in scale model of a ventilated room. Exps. Fluids 33, 940949.CrossRefGoogle Scholar
Perry, A. E. 1982 Hot-Wire Anemometry. Clarendon Press.Google Scholar
Prabhu, R. D., Collis, S. S. & Chang, Y. 2001 The influence of control on proper orthogonal decomposition of wall-bounded turbulent flows. Phys. Fluids 13, 520537.CrossRefGoogle Scholar
Rajaee, M., Karlsson, S. K. F. & Sirovich, L. 1994 Low-dimensional description of free-shear-flow coherent structures and their dynamical behaviour. J. Fluid Mech. 258, 129.CrossRefGoogle Scholar
Ramesh, O. N., Dey, J. & Prabhu, A. 1996 Transitional intermittency distribution in a three-dimensional constant pressure diverging flow. Exp. Fluids 21, 259263.CrossRefGoogle Scholar
Rempfer, D. & Fasel, H. F. 1994 Evolution of three-dimensional coherent structures in a flat-plate boundary layer. J. Fluid Mech. 260, 351375.CrossRefGoogle Scholar
Rist, U. & Fasel, H. 1995 Direct numerical simulation of controlled transition in a flat-plate boundary layer. J. Fluid Mech. 298, 211248.CrossRefGoogle Scholar
Roach, P. E. & Brierly, D. H. 1992 The influence of a turbulent free stream on zero pressure gradient transitional boundary layer development. Part I. Test cases T3A and T3B. In ERCOFTAC Workshop: Numerical Simulation of Unsteady Flows and Transition to Turbulence, Lausanne (ed. Pironneau, O., Rodi, W., Ryhming, I. L., Savill, A. M. & Truong, T. V.), pp. 319347. Cambridge University Press.Google Scholar
Schlatter, P., Brandt, L., de Lange, H. C. & Henningson, D. S. 2008 On streak breakdown in bypass transition. Phys. Fluids 20, 101505-1–101505-15.CrossRefGoogle Scholar
Simon, T. W., Qiu, S. & Yuan, K. 2000 Measurements in a transitional boundary layer under low-pressure turbine airfoil conditions. Tech. Rep. CR-2000-209957. NASA.Google Scholar
Singer, B. A. 1996 Characteristics of a young turbulent spot. Phys. Fluids 8, 509521.CrossRefGoogle Scholar
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. Part 1: Coherent structures. Q. Appl. Math. 45, 561571.CrossRefGoogle Scholar
Taylor, G. I. 1939 Some recent developments in the study of turbulence. In Proceedings of Fifth International Congress for Applied Mechanics (ed. Hartog, J. P. Den & Peters, H.), pp. 294310. Wiley.Google Scholar
Tennekes, H. & Lumley, J. L. 1997 A First Course in Turbulence. MIT Press.Google Scholar
Vasudevan, K. P., Dey, J. & Prabhu, A. 2001 Spot propagation characteristics in laterally strained boundary layer. Exp. Fluids 30, 488491.CrossRefGoogle Scholar
Westin, K. J. A., Boiko, A. V., Klingmann, B. G. G., Kozlov, V. V. & Alfredsson, P. H. 1994 Experiments in a boundary layer subjected to free stream turbulence. Part 1. Boundary layer structure and receptivity. J. Fluid Mech. 281, 193218.CrossRefGoogle Scholar
Wygnanski, I., Zilberman, M. & Haritonidis, J. H. 1982 On the spreading of a turbulent spot in the absence of a pressure gradient. J. Fluid Mech. 123, 6990.CrossRefGoogle Scholar
Zaki, T. A. & Durbin, P. A. 2005 Mode interaction and the bypass route to transition. J. Fluid Mech. 531, 85111.CrossRefGoogle Scholar