Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-28T14:42:25.672Z Has data issue: false hasContentIssue false

Viscous fingering phenomena in the early stage of polymer membrane formation

Published online by Cambridge University Press:  01 February 2019

Manuel Hopp-Hirschler*
Affiliation:
Institute of Chemical Process Engineering, University of Stuttgart, 70199 Stuttgart, Germany
Mostafa Safdari Shadloo
Affiliation:
CNRS-University and INSA of Rouen, Normandie University, CORIA-UMR 6614, 76000 Rouen, France
Ulrich Nieken
Affiliation:
Institute of Chemical Process Engineering, University of Stuttgart, 70199 Stuttgart, Germany
*
Email address for correspondence: manuel.hopp@icvt.uni-stuttgart.de

Abstract

Currently, the most important preparation process for porous polymer membranes is the phase inversion process. While applied for several decades in industry, the mechanism that leads to diverse morphology is not fully understood today. In this work, we present time resolved experiments using light microscopy that indicate viscous fingering during the early stage of pore formation in porous polymer membranes. Numerical simulations using the smoothed particle hydrodynamics method are also performed based on Cahn–Hilliard and Navier–Stokes equations to investigate the formation of viscous fingers in miscible and immiscible systems. The comparison of pore formation characteristics in the experiment and simulation shows that immiscible viscous fingering is present; however, it is only relevant in specific preparation set-ups similar to Hele-Shaw cells. In experiments, we also observe the formation of Liesegang rings. Enabling diffusive mass transport across the immiscible interface leads to Liesegang rings in the simulation. We conclude that further investigations of Liesegang pattern as a relevant mechanism in the formation of morphology in porous polymer membranes are necessary.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adami, S., Hu, X. Y. & Adams, N. A. 2010 A new surface-tension formulation for multi-phase SPH using a reproducing devergence approximation. J. Comput. Phys. 229, 20115021.Google Scholar
Ambrosone, L., Errico, G. D., Sartorio, R. & Vitagliano, V. 1995 Analysis of velocity cross-correlation and preferential solvation for the system n-methylpyrrolidone-water at 20 °C. J. Chem. Soc. Faraday Trans. 91 (9), 13391344.Google Scholar
Balashova, I. M., Danner, R. P., Puri, P. S. & Duda, J. L. 2001 Solubility and diffusivity of solvents and nonsolvents in polysulfone and polyetherimide. Ind. Engng Chem. Res. 40, 30583064.Google Scholar
Bensimon, D., Kadanoff, L. P., Liang, S., Shraiman, B. I. & Tang, C. 1986 Viscous flows in two dimensions. Rev. Mod. Phys. 58, 977999.Google Scholar
Bonet, J. & Lok, T.-S. L. 1999 Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Comput. Meth. Appl. Mech. Engng 180, 97115.Google Scholar
Boom, M. R.1992 Membrane formation by immersion precipitation: the role of a polymeric additive. PhD thesis, University of Enschede.Google Scholar
Casademunt, J. 2004 Viscous fingering as a paradigm of interfacial pattern formation: recent results and new challenges. Chaos 14 (3), 809824.Google Scholar
Casademunt, J. & Magdaleno, F. X. 2000 Dynamics and selection of fingering patterns. Recent developments in the Saffman–Taylor problem. Phys. Rep. 337 (12), 135.Google Scholar
Chorin, A. J. 1968 Numerical solution of the Navier–Stokes equations. Maths Comput. 22, 745762.Google Scholar
Chuoke, R. L., van Meurs, P. & van der Poel, C. 1959 The instability of slow, immiscible, viscous liquid–liquid displacements in permeable media. Trans. AIME 216, 233268.Google Scholar
Colagrossi, A. & Landrini, M. 2003 Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys. 191, 448475.Google Scholar
Couder, Y. 2000 Perspectives in Fluid Dynamics. Cambridge University Press.Google Scholar
Cueto-Felgueroso, L. & Juanes, R. 2014 A phase-field model of two-phase Hele-Shaw flow. J. Fluid Mech. 758, 522552.Google Scholar
Cummins, S. J. & Rudman, M. 1999 An SPH projection method. J. Comput. Phys. 152, 584607.Google Scholar
Degregoria, A. J. & Schwartz, L. W. 1986 A boundary-integral method for two-phase displacement in Hele-Shaw cells. J. Fluid Mech. 164, 383400.Google Scholar
Espanol, P. & Revenga, M. 2003 Smoothed dissipative particle dynamics. Phys. Rev. E 67, 026705.Google Scholar
Euler, L. 1768 Institutiones Calculi Integralis. Acad. Imp. Reprinted in OO.Google Scholar
Fatehi, R., Shadloo, M. S. & Manzari, M. T. 2014 Numerical investigation of two-phase secondary Kelvin–Helmholtz instability. Proc. Inst. Mech. Engrs, C 228 (11), 19131924.Google Scholar
Flory, P. J. 1942 Thermodynamics of high polymer solutions. J. Chem. Phys. 10, 5161.Google Scholar
Foard, E. M. & Wagner, A. J. 2012 Survey of morphologies formed in the wake of an enslaved phase-separation front in two dimensions. Phys. Rev. E 85, 011501.Google Scholar
Frommer, M. A. & Messalem, R. M. 1973 Mechanism of membrane formation. VI. Convective flows and large void formation during membrane precipitation. Ind. Engng Chem. Prod. Res. Dev. 12 (4), 328333.Google Scholar
Gingold, R. A. & Monaghan, J. J. 1977 Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375389.Google Scholar
Grenier, N., Antuono, M., Colagrossi, A., Le Touzé, D. & Alessandrini, B. 2009 An Hamiltonian interface SPH formulation for multi-fluid and free surface flows. J. Comput. Phys. 228, 83808393.Google Scholar
Hejazi, S. H., Trevelyan, P. M. J., Azaiez, J. & de Wit, A. 2010 Viscous fingering of a miscible reactive a + b → c interface: a linear stability analysis. J. Fluid Mech. 652, 501528.Google Scholar
Hele-Shaw, H. S. 1898 The flow of water. Nature 58, 3336.Google Scholar
Hill, S. 1952 Channeling in packed columns. Chem. Engng Sci. 1 (6), 247253.Google Scholar
Hirschler, M., Huber, M., Säckel, W., Kunz, P. & Nieken, U. 2014 An application of the Cahn–Hilliard approach to smoothed particle hydrodynamics. Math. Problems Engng 2014, 694894.Google Scholar
Hirschler, M., Keller, F., Huber, M., Säckel, W. & Nieken, U. 2013 Ein gitterfreies berechnungsverfahren zur simulation von koaleszenz in mehrphasensystemen. Chem. Ing. Techn. 85 (7), 10991106.Google Scholar
Hirschler, M., Kunz, P., Huber, M., Hahn, F. & Nieken, U. 2016a Open boundary conditions for ISPH and their application to micro-flow. J. Comput. Phys. 307, 614633.Google Scholar
Hirschler, M., Säckel, W. & Nieken, U. 2016b On Maxwell–Stefan diffusion in smoothed particle hydrodynamics. Intl J. Heat Mass Transfer 103, 548554.Google Scholar
Homsy, G. M. 1987 Viscous fingering in porous media. Annu. Rev. Fluid Mech. 19 (1), 271311.Google Scholar
Hu, X. Y. & Adams, N. A. 2006 A multi-phase SPH method for macroscopic and mesoscopic flows. J. Comput. Phys. 213, 844861.Google Scholar
Huggins, M. L. 1942 Some properties of solutions of long-chain compounds. J. Phys. Chem. 46, 151158.Google Scholar
Keller, F.2015 Simulation of the morphogenesis of open-porous materials. PhD thesis, University of Stuttgart.Google Scholar
Kimmerle, K. & Strathmann, H. 1990 Analysis of the structure-determining process of phase inversion membranes. Desalination 79, 283302.Google Scholar
Koenhen, D. M., Mulder, M. H. V. & Smolders, C. A. 1977 Phase separation phenomena during the formation of asymmetric membranes. J. Appl. Polym. Sci. 21 (1), 199215.Google Scholar
Kools, W. F. C.1998 Membrane formation by phase inversion in multicomponent polymer systems. Habilitation, Universität Twente.Google Scholar
Kunz, P., Hirschler, M., Huber, M. & Nieken, U. 2016 Inflow/outflow with Dirichlet boundary conditions for pressure in ISPH. J. Comput. Phys. 326, 171187.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1987 Course of Theoretical Physics: Fluid Dynamics, 2nd edn, vol. 6. Elsevier.Google Scholar
Landrini, M., Colagrossi, A., Greco, M. & Tulin, M. P. 2007 Gridless simulations of splashing processes and near-shore bore propagation. J. Fluid Mech. 591, 183213.Google Scholar
Le Touzé, D., Oger, G. & Alessandrini, B. 2008 Smoothed particle hydrodynamics simulation of fast ship flows. In Proc. 27th Symposium on Naval Hydrodynamics. US Office of Naval Research.Google Scholar
Liu, G. R. & Liu, M. B. 2003 Smoothed Particle Hydrodynamics. A Meshfree Particle Method. World Scientific.Google Scholar
Liu, M. B. & Liu, G. R. 2010 Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch. Comput. Meth. Engng 17, 2576.Google Scholar
Lucy, L. B. 1977 A numerical approach to the testing of the fission hypothesis. Astronom. J. 82, 10131024.Google Scholar
Maher, J. V. 1985 Development of viscous fingering patterns. Phys. Rev. Lett. 54, 14981501.Google Scholar
Matz, R. 1972 The structure of cellulose acetate membranes. II. The physical and transport characteristics of the porous layer of anisotropic membranes. Desalination 11 (2), 207215.Google Scholar
Meiburg, E. & Homsy, G. M. 1988 Nonlinear unstable viscous fingers in Hele-Shaw flows. II. Numerical simulation. Phys. Fluids 31 (3), 429439.Google Scholar
Monaghan, J. J. 1992 Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543574.Google Scholar
Monaghan, J. J. 1994 Simulating free surface flows with SPH. J. Comput. Phys. 110, 399406.Google Scholar
Monaghan, J. J. 2005 Smoothed particle hydrodynamics. Rep. Prog. Phys. 68 (8), 17031759.Google Scholar
Morris, J. P., Fox, P. J. & Zhu, Y. 1997 Modeling low Reynolds number incompressible flows using SPH. J. Comput. Phys. 136, 214226.Google Scholar
Park, C.-W. & Homsy, G. M. 1984 Two-phase displacement in Hele-Shaw cells: theory. J. Fluid Mech. 139, 291308.Google Scholar
Pramanik, S. & Mishra, M. 2015 Effect of Péclet number on miscible rectilinear displacement in a Hele-Shaw cell. Phys. Rev. E 91, 033006.Google Scholar
Price, D. J. 2008 Modelling discontinuities and Kelvin–Helmholtz instabilities in SPH. J. Comput. Phys. 227, 1004010057.Google Scholar
Rahmat, A., Tofighi, N., Shadloo, M. S. & Yildiz, M. 2014 Numerical simulation of wall bounded and electrically excited Rayleigh–Taylor instability using incompressible smoothed particle hydrodynamics. Colloids Surf. A 460, 6070.Google Scholar
Rahmat, A., Tofighi, N. & Yildiz, M. 2018 A numerical study of Rayleigh–Taylor instability for various Atwood numbers using ISPH method. Prog. Comput. Fluid Dyn. 18 (5), 267.Google Scholar
Ren, J., Li, Z. & Wong, F.-S. 2004 Membrane structure control of BTDA-TDI/MDI (P84) co-polyimide asymmetric membranes by wet-phase inversion process. J. Membr. Sci. 241, 305314.Google Scholar
Reuvers, A. J. & Smolders, C. A. 1987 Formation of membranes by means of immersion precipitation. Part II. The mechanism of formation of membranes prepared from the system cellulose acetate–acetone–water. J. Membr. Sci. 34, 6786.Google Scholar
Saffman, P. G. & Taylor, G. 1958 The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A 245 (1242), 312329.Google Scholar
Shadloo, M. S., Oger, G. & Le Touzé, D. 2016 Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: motivations, current state, and challenges. Comput. Fluids 136, 1134.Google Scholar
Shadloo, M. S., Rahmat, A. & Yildiz, M. 2013 A smoothed particle hydrodynamics study on the electrohydrodynamic deformation of a droplet suspended in a neutrally buoyant Newtonian fluid. Comput. Mech. 52 (3), 693707.Google Scholar
Shadloo, M. S. & Yildiz, M. 2011 Numerical modeling of Kelvin–Helmholtz instability using smoothed particle hydrodynamics. Intl J. Numer. Meth. Engng 87 (10), 9881006.Google Scholar
Shadloo, M. S., Zainali, A., Sadek, S. H. & Yildiz, M. 2011 Improved incompressible smoothed particle hydrodynamics method for simulating flow around bluff bodies. Comput. Meth. Appl. Mech. Engng 200 (9), 10081020.Google Scholar
Shadloo, M. S., Zainali, A. & Yildiz, M. 2012a Simulation of single mode Rayleigh–Taylor instability by SPH method. Comput. Mech. 51 (5), 699715.Google Scholar
Shadloo, M. S., Zainali, A., Yildiz, M. & Suleman, A. 2012b A robust weakly compressible SPH method and its comparison with an incompressible SPH. Intl J. Numer. Meth. Engng 89, 939956.Google Scholar
Shepard, D. 1968 A two dimensional function for irregulary spaced data. In Proceedings of ACM National Conference, pp. 517524. ACM.Google Scholar
Smolders, C. A., Reuvers, A. J., Boom, R. M. & Wienk, I. M. 1992 Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids. J. Membr. Sci. 73, 259275.Google Scholar
Strathmann, H. 2011 Introduction to Membrane Science and Technology, 1st edn. Wiley-VCH.Google Scholar
Strathmann, H., Kock, K. & Amar, P. 1975 The formation mechanism of asymmetric membranes. Desalination 16, 179203.Google Scholar
Szewc, K., Pozorski, J. & Minier, J.-P. 2012 Analysis of the incompressibility constraint in the smoothed particle hydrodynamics method. Intl J. Numer. Meth. Engng 92, 343369.Google Scholar
Tan, C. T. & Homsy, G. M. 1988 Simulation of nonlinear viscous fingering in miscible displacement. Phys. Fluids 31 (6), 13301338.Google Scholar
Tanveer, S. 2000 Surprises in viscous fingering. J. Fluid Mech. 409, 273308.Google Scholar
Tartakovsky, A. M. & Meakin, P. 2005 A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional Rayleigh–Taylor instability. J. Comput. Phys. 207, 610624.Google Scholar
Tryggvason, G. & Aref, H. 1983 Numerical experiments on Hele-Shaw flow with a sharp interface. J. Fluid Mech. 136, 130.Google Scholar
Violeau, D. 2012 Fluid Mechanics and the SPH Method. Oxford University Press.Google Scholar
Wendland, H. 1995 Piecewise polynominal, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4, 389396.Google Scholar
van de Witte, P., Dijkstra, P. J., van den Berg, J. W. A. & Feijen, J. 1996 Phase separation processes in polymer solutions in relation to membrane formation. J. Membr. Sci. 117, 131.Google Scholar
Xu, R., Stansby, P. & Laurence, D. 2009 Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach. J. Comput. Phys. 228, 67036725.Google Scholar
Yu, L., Yang, F. & Xiang, M. 2014 Phase separation in a PSF/DMF/water system: a proposed mechanism for macrovoid formation. RSC Adv. 4, 4239142402.Google Scholar