Skip to main content
    • Aa
    • Aa

Analytical approximations to the flow field induced by electroosmosis during isotachophoretic transport through a channel


An analytical approximation is derived for the flow field in the vicinity of a transition zone between electrolytes of different mobility in isotachophoretic transport through a channel. Due to the difference in electroosmotic mobility and electric field on both sides of the transition zone, the flow field consists of a superposition of electroosmotic and pressure-driven flow. The corresponding convective ion transport inherently reduces the resolution of isotachophoretic separation processes. The derived analytical result is adequate for both wide and narrow transition zones and valid in the limit of thin electric double layers, relevant for most situations where isotachophoresis is employed. In this way, it complements and generalizes the results obtained for wide transition zones in the lubrication approximation. The analysis is extended to multiple sample zones with ions of different electrophoretic mobility, a scenario characteristic for applications in the field of analytical chemistry. The results are validated by comparison to finite-element calculations accounting for the transport of different ionic species governed by the coupled Nernst–Planck and Stokes equations, both for situations with only a single transition zone as well as for several transition zones. Excellent agreement is obtained between the analytical and the numerical results for realistic parameter values encountered in ITP experiments. This suggests using the analytical expression for the flow field in the framework of numerical studies of species transport in ITP experiments, since the time-consuming computation of the velocity field is essentially eliminated. The latter is successfully demonstrated using an iterative procedure, numerically solving the Nernst–Planck equation for a given flow field, and using the resulting concentration fields as an input for the derived analytical expression.

Corresponding author
Email address for correspondence:
Hide All
R. Bharadwaj & J. G. Santiago 2005 Dynamics of field-amplified sample stacking. J. Fluid Mech. 543, 5792.

L. Chen , J. E. Prest , P. R. Fielden , N. J. Goddard , A. Manz & P. J. R. Day 2006 Miniaturised isotachophoresis analysis. Lab Chip 6, 474487.

H. Cui , P. Dutta & C. F. Ivory 2007 Isotachophoresis of proteins in a networked microfluidic chip: Experiment and 2-D simulation. Electrophoresis 28, 11381145.

P. Gebauer , Z. Mala & P. Bocek 2009 Recent progress in analytical capillary ITP. Electrophoresis 30 (1), 2935.

S. Ghosal 2002 aBand broadening in a microcapillary with a stepwise change in the ζ-potential. Anal. Chem. 74 (16), 41984203.

S. Ghosal 2002 b Lubrication theory for electro-osmotic flow in a microfluidic channel of slowly varying cross-section and wall charge. J. Fluid Mech. 459, 103128.

S. Ghosal 2006 Electrokinetic flow and dispersion in capillary electrophoresis. Annu. Rev. Fluid Mech. 38, 309338.

B. Graß , A. Neyer , M. Jöhnck , D. Siepe , F. Eisenbeiss , G. Weber & R. Hergenröder , 2001 A new PMMA-microchip device for isotachophoresis with integrated conductivity detector. Sensors Actuators B 72 249258.

A. H. Herr , J. I. Molho , J. G. Santiago , M. G. Mungal , T. W. Kenny & M. G. Garguilo 2000 Electroosmotic capillary flow with non-uniform ζ-potential. Anal. Chem. 72 (5), 10531057.

K. Horiuchi , P. Dutta & C. F. Ivory 2007 Electroosmosis with step changes in zeta potential in microchannel electrophoresis. AIChE J. 53 (10), 25212533.

V. Hruška & B. Gaš 2007 Kohlrausch regulating function and other conservation laws in electrophoresis. Electrophoresis 28, 314.

H. Huang , F. Xu , Z. Dai & B. Lin 2005 On-line isotachophoretic preconcentration and gel electrophoretic separation of sodium dodecyl sulfate-proteins on a microchip. Electrophoresis 26, 22542260.

D. D. Joseph 1977 The convergence of biorthogonal series for biharmonic and Stokes flow edge problems, Part I. SIAM J. Appl. Math. 33, 337347.

B. Jung , R. Bharadwaj & J. G. Santiago 2006 On-chip millionfold sample stacking using transient isotachophoresis. Anal. Chem. 78, 23192327.

T. K. Khurana & J. G. Santiago 2008 aPreconcentration, separation, and indirect detection of nonfluorescent analytes using fluorescent mobility markers. Anal. Chem. 80, 279287.

T. K. Khurana & J. G. Santiago 2008 bSample zone dynamics in peak mode isotachophoresis. Anal. Chem. 80, 63006307.

B. J. Kirby & E. F. Hasselbrink 2004 a Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25, 187202.

B. J. Kirby & E. F. Hasselbrink 2004 aZeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25, 187202.

F. Kohlrausch 1897 Über Concentrations-Verschiebungen durch Electrolyse im Innern von Lösungen und Lösungsgemischen. Ann. Phys. 298 (10), 209239.

L. D. Landau & E. M. Lifshitz 1987 Fluid Mechanics, 2nd edn (revised). Pergamon.

C. C. Lin , B. K. Hsu & S. H. Chen 2008 Integrated isotachophoretic stacking and gel electrophoresis on a plastic substrate and variations in detection dynamic range. Electrophoresis 29, 12281236.

D. Long , H. A. Stone & A. Ajdari 1999 Electroosmotic flows created by surface defects in capillary electrophoresis. J. Colloid Interface Sci. 212, 338349.

D. A. MacInnes & L. G. Longsworth 1932 Transference numbers by the method of moving boundaries. Chem. Rev. 11, 171230.

V. V. Meleshko 1996 Steady stokes flow in a rectangular cavity. Proc. R. Soc. Lond. A 452, 19992022.

E. Ölvecka , M. Masar , D. Kaniansky , M. Jöhnck & B. Stanislawski 2001 Isotachophoresis separations of enantiomers on a planar chip with coupled separation channels. Electrophoresis 22, 33473353.

S. Qian & H. H. Bau 2002 A chaotic electroosmotic stirrer. Anal. Chem. 74, 36163625.

M. Reza Mohamadi , N. Kaji , M. Tokeshi & Y. Baba 2007 Online preconcentration by transient isotachophoresis in linear polymer on a poly(methyl methacrylate) microchip for separation of human serum albumin immunoassay mixtures. Anal. Chem. 79, 36673672.

D. A. Saville 1990 The effects of electroosmosis on the structure of isotachophoresis boundaries. Electrophoresis 11, 899902.

F. Schönfeld , G. Goet , T. Baier & S. Hardt 2009 Transition zone dynamics in combined isotachophoretic and electroosmotic transport. Phys. Fluids 21, 092002.

T. L. Sounart & J. C. Baygents 2001 Electrically-driven fluid motion in channels with streamwise gradients of the electrical conductivity Colloids Surf. A 195, 5975.

T. L. Sounart & J. C. Baygents 2007 Lubrication theory for electro-osmotic flow in a non-uniform electrolyte. J. Fluid Mech. 576, 139172.

J. K. Towns & F. E. Regnier 1992 Impact of polycation adsorption on efficiency and electroosmotically driven transport in capillary electrophoresis. Anal. Chem. 64, 24732478.

P. A. Walker , M. D. Morris , M. A. Burns & B. N. Johnson 1998 Isotachophoretic separations on a microchip. Normal Raman spectroscopy detection Anal. Chem. 70, 37663769.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary Materials

Baier et al. supplementary material

 PDF (569 KB)
569 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 24 *
Loading metrics...

Abstract views

Total abstract views: 91 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 16th October 2017. This data will be updated every 24 hours.