Skip to main content
×
Home
    • Aa
    • Aa

Bubble dynamics in time-periodic straining flows

  • I. S. Kang (a1) (a2) and L. G. Leal (a1) (a3)
Abstract

The dynamics and breakup of a bubble in an axisymmetric, time-periodic straining flow has been investigated via analysis of an approximate dynamic model and also by time-dependent numerical solutions of the full fluid mechanics problem. The analyses reveal that in the neighbourhood of a stable steady solution, an $O(\epsilon^{\frac{1}{3}})$ time-dependent change of bubble shape can be obtained from an O(ε) resonant forcing. Furthermore, the probability of bubble breakup at subcritical Weber numbers can be maximized by choosing an optimal forcing frequency for a fixed forcing amplitude.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 12 *
Loading metrics...

Abstract views

Total abstract views: 64 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 30th May 2017. This data will be updated every 24 hours.