Skip to main content
    • Aa
    • Aa

Bubbling reduces intermittency in turbulent thermal convection

  • Rajaram Lakkaraju (a1) (a2), Federico Toschi (a3) (a4) and Detlef Lohse (a1)

Intermittency effects are numerically studied in turbulent bubbling Rayleigh–Bénard (RB) flow and compared to the standard RB case. The vapour bubbles are modelled with a Euler–Lagrangian scheme and are two-way coupled to the flow and temperature fields, both mechanically and thermally. To quantify the degree of intermittency we use probability density functions, structure functions, extended self-similarity (ESS) and generalized extended self-similarity (GESS) for both temperature and velocity differences. For the standard RB case we reproduce scaling very close to the Obukhov–Corrsin values common for a passive scalar and the corresponding relatively strong intermittency for the temperature fluctuations, which are known to originate from sharp temperature fronts. These sharp fronts are smoothed by the vapour bubbles owing to their heat capacity, leading to much less intermittency in the temperature but also in the velocity field in bubbling thermal convection.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

G. Ahlers , S. Grossmann  & D. Lohse 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503.

F. Belin , P. Tabeling  & H. Willaime 1996 Exponents of the structure functions in a low temperature helium experiment. Physica D 93, 52.

R. Benzi , L. Biferale , S. Ciliberto , M. V. Struglia  & R. Tripiccione 1996 Generalized scaling in fully developed turbulence. Physica D 96, 162.

L. Biferale , P. Perlekar , M. Sbragaglia  & F. Toschi 2012 Convection in multiphase fluid flows using Lattice-Boltzmann methods. Phys. Rev. Lett. 108, 104502.

R. Bolgiano 1959 Turbulent spectra in a stably stratified atmosphere. J. Geophys. Res. 64, 2226.

Y. Burnishev  & V. Steinberg 2012 Statistics and scaling properties of temperature field in symmetrical non-Oberbeck–Boussinesq turbulent convection. Phys. Fluids 24, 045102.

E. Calzavarini , F. Toschi  & R. Tripiccione 2002 Evidences of Bolgiano–Obukhov scaling in three-dimensional Rayleigh–Bénard convection. Phys. Rev. E 66, 016304.

A. Celani , A. Lanotte , A. Mazzino  & M. Vergassola 2000 Universality and saturation of intermittency in passive scalar turbulence. Phys. Rev. Lett. 84, 2385.

S. Chen  & R. H. Kraichnan 1998 Simulations of a randomly advected passive scalar field. Phys. Fluids 10, 2867.

E. S. C. Ching , Y. Cohen , T. Gilbert  & I. Procaccia 2003 Active and passive fields in turbulent transport: the role of statistically preserved structures. Phys. Rev. E 67, 016304.

S. Corrsin 1951 On the spectrum of isotropic temperature fluctuations in isotropic turbulence. J. Appl. Phys. 22, 469.

Z. A. Daya  & R. E. Ecke 2001 Does turbulent convection feel the shape of the container?. Phys. Rev. Lett. 87, 184501.

V. K. Dhir 1998 Boiling heat transfer. Annu. Rev. Fluid Mech. 30, 365.

J. P. Gollub , J. Clarke , M. Gharib , B. Lane  & O. N. Mesquita 1991 Fluctuations and transport in a stirred fluid with a mean gradient. Phys. Rev. Lett. 67, 3507.

T. Gotoh , D. Fukayama  & T. Nakano 2002 Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation. Phys. Fluids 14, 1065.

S. Grossmann , D. Lohse  & A. Reeh 1997a Application of extended self-similarity in turbulence. Phys. Rev. E 56, 5473.

S. Grossmann , D. Lohse  & A. Reeh 1997b Different intermittency for longitudinal and transversal turbulent fluctuations. Phys. Fluids 9, 3817.

M. Holzer  & A. Pumir 1993 Simple models of non-Gaussian statistics for a turbulently advected passive scalar. Phys. Rev. E 47, 202.

M. Holzer  & E. D. Siggia 1994 Turbulent mixing of a passive scalar. Phys. Fluids 6, 1820.

R. P. J. Kunnen , H. J. H. Clercx , B. J. Geurts , L. J. A. van Bokhoven , R. A. D. Akkermans  & R. Verzicco 2008 Numerical and experimental investigation of structure-function scaling in turbulent Rayleigh–Bénard convection. Phys. Rev. E 77, 016302.

R. Lakkaraju , L. E. Schmidt , P. Oresta , F. Toschi , R. Verzicco , D. Lohse  & A. Prosperetti 2011 Effect of vapor bubbles on velocity fluctuations and dissipation rates in bubbly Rayleigh–Bénard convection. Phys. Rev. E 84, 036312.

R. Lakkaraju , R. J. A. M. Stevens , P. Oresta , R. Verzicco , D. Lohse  & A. Prosperetti 2013 Heat transport in bubbling turbulent convection. Proc. Natl Acad. Sci. USA 110 (23), 9237.

L. D. Landau  & E. M. Lifshitz 1987 Fluid Mechanics. Pergamon.

D. Lohse  & K. Q. Xia 2010 Small scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335.

J. Magnaudet  & I. Eames 2000 The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annu. Rev. Fluid Mech. 32, 659.

M. R. Maxey  & J. J. Riley 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883.

F. Moisy , H. Willaime , J. Anderson  & P. Tabeling 2001 Passive scalar intermittency in low temperature helium flows. Phys. Rev. Lett. 86, 4827.

L. Mydlarski , A. Pumir , B. I. Shraiman , E. D. Siggia  & Z. Warhaft 1998 Structures and multipoint correlaters for turbulent advection: Predictions and experiments. Phys. Rev. Lett. 81, 4373.

P. Oresta , R. Verzicco , D. Lohse  & A. Prosperetti 2009 Heat transfer mechanisms in bubbly Rayleigh–Bénard convection. Phys. Rev. E 80, 026304.

A. Pumir 1994 A numerical study of the mixing of a passive scalar in three dimensions in the presence of a mean gradient. Phys. Fluids 6, 2118.

A. Pumir 1998 Structure of the three-point correlation function of a passive scalar in the presence of a mean gradient. Phys. Rev. E 57, 2914.

A. Pumir , B. Shraiman  & E. D. Siggia 1991 Exponential tails and random advection. Phys. Rev. Lett. 66, 2984.

G. Ruiz-Chavarria , C. Baudet  & S. Ciliberto 1996 Scaling laws and dissipation scale of a passive scalar in fully developed turbulence. Physica D 99, 369.

L. E. Schmidt , P. Oresta , F. Toschi , R. Verzicco , D. Lohse  & A. Prosperetti 2011 Modification of turbulence in Rayleigh–Bénard convection by phase change. New J. Phys. 13, 025002.

Z. S. She  & E. Leveque 1994 Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 72, 336.

B. I. Shraiman  & E. D. Siggia 1990 Transport in high Rayleigh number convection. Phys. Rev. A 42, 3650.

B. I. Shraiman  & E. D. Siggia 2000 Scalar turbulence. Nature 405, 639.

E. D. Siggia 1994 High Rayleigh number convection. Annu. Rev. Fluid Mech. 26, 137.

K. R. Sreenivasan 1991 On local isotropy of passive scalars in turbulent shear flows. Proc. R. Soc. Lond. A 434, 165.

K. R. Sreenivasan  & R. A. Antonia 1997 The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29, 435.

A. Staicu  & W. van de Water 2003 Small scale velocity jumps in shear turbulence. Phys. Rev. Lett. 90, 094501.

C. Sun , Q. Zhou  & K. Q. Xia 2006 Cascades of velocity and temperature fluctuations in buoyancy-driven thermal turbulence. Phys. Rev. Lett. 97, 144504.

Z. Warhaft 2000 Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32, 203.

T. Watanabe  & T. Gotoh 2004 Statistics of a passive scalar in homogeneous turbulence. New J. Phys. 6, 40.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 21 *
Loading metrics...

Abstract views

Total abstract views: 96 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 27th March 2017. This data will be updated every 24 hours.