Skip to main content
    • Aa
    • Aa

Comparison of variational balance models for the rotating shallow water equations

  • David G. Dritschel (a1), Georg A. Gottwald (a2) and Marcel Oliver (a3)

We present an extensive numerical comparison of a family of balance models appropriate to the semi-geostrophic limit of the rotating shallow water equations, and derived by variational asymptotics in Oliver (J. Fluid Mech., vol. 551, 2006, pp. 197–234) for small Rossby numbers $Ro$ . This family of generalized large-scale semi-geostrophic (GLSG) models contains the $L_{1}$ -model introduced by Salmon (J. Fluid Mech., vol. 132, 1983, pp. 431–444) as a special case. We use these models to produce balanced initial states for the full shallow water equations. We then numerically investigate how well these models capture the dynamics of an initially balanced shallow water flow. It is shown that, whereas the $L_{1}$ -member of the GLSG family is able to reproduce the balanced dynamics of the full shallow water equations on time scales of $O(1/Ro)$ very well, all other members develop significant unphysical high wavenumber contributions in the ageostrophic vorticity which spoil the dynamics.

Corresponding author
Email addresses for correspondence:,,
Hide All
AllenJ. S. & HolmD. D. 1996 Extended-geostrophic Hamiltonian models for rotating shallow water motion. Phys. D 98 (2), 229248.
AllenJ. S., HolmD. D. & NewbergerP. A. 2002 Toward an extended-geostrophic Euler–Poincaré model for mesoscale oceanographic flow. In Large-scale Atmosphere–ocean Dynamics (ed. Norbury J. & Roulstone I.), vol. 1, pp. 101125. Cambridge University Press.
BenamouJ. D. & BrenierY. 1998 Weak existence for the semigeostrophic equations formulated as a coupled Monge–Ampère/transport problem. SIAM J. Appl. Maths 58 (5), 14501461.
BloomS. C., TakacsL. L., Da SilvaA. M. & LedvinaD. 1996 Data assimilation using incremental analysis updates. Mon. Weath. Rev. 124, 12561271.
BrethertonF. P. 1970 A note on Hamilton’s principle for perfect fluids. J. Fluid Mech. 44, 1931.
ÇalıkM. & OliverM. 2013 Weak solutions for generalized large-scale semigeostrophic equations. Commun. Pure Appl. Anal. 12 (2), 939953.
ÇalıkM., OliverM. & VasylkevychS. 2013 Global well-posedness for the generalized large-scale semigeostrophic equations. Arch. Rat. Mech. Anal. 207 (3), 969990.
CullenM. J. P. 2008 A comparison of numerical solutions to the eady frontogenesis problem. Q. J. R. Meteorol. Soc. 134 (637), 21432155.
CullenM. J. P. & PurserR. J. 1984 An extended Lagrangian theory of semi-geostrophic frontogenesis. J. Atmos. Sci. 41 (9), 14771497.
EliassenA. 1948 The quasi-static equations of motion with pressure as independent variable. Geophys. Publ. 17, 144.
GoldsteinH. 1980 Classical Mechanics, 2nd edn. Addison-Wesley.
GottwaldG. A. 2014 Controlling balance in an ensemble Kalman filter. Nonlinear Process. Geophys. 21, 417426.
GottwaldG. A. & OliverM. 2014 Slow dynamics via degenerate variational asymptotics. Proc. R. Soc. Lond. A 470 (2170), 20140460.
GreybushS. J., KalnayE., MiyoshiT., IdeK. & HuntB. R. 2011 Balance and ensemble Kalman filter localization techniques. Mon. Weath. Rev. 139 (2), 511522.
HoskinsB. J. 1975 The geostrophic momentum approximation and the semi-geostrophic equations. J. Atmos. Sci. 32 (2), 233242.
KepertJ. D. 2009 Covariance localisation and balance in an ensemble Kalman filter. Q. J. R. Meteorol. Soc. 135 (642), 11571176.
LynchP. 2006 The Emergence of Numerical Weather Prediction: Richardson’s Dream. Cambridge University Press.
McIntyreM. E. & RoulstoneI. 2002 Are there higher-accuracy analogues of semigeostrophic theory? In Large-scale Atmosphere–ocean Dynamics (ed. Norbury J. & Roulstone I.), vol. 2, pp. 301364. Cambridge University Press.
MitchellH. L., HoutekamerP. L. & PellerinG. 2002 Ensemble size, balance, and model-error representation in an ensemble Kalman filter. Mon. Weath. Rev. 130 (11), 27912808.
MohebalhojehA. R. & DritschelD. G. 2001 Hierarchies of balance conditions for the f-plane shallow-water equations. J. Atmos. Sci. 58 (16), 24112426.
MohebalhojehA. R. & DritschelD. G. 2004 Contour-advective semi-Lagrangian algorithms for many-layer primitive equation models. Q. J. R. Meteorol. Soc. 130, 347364.
OliverM. 2006 Variational asymptotics for rotating shallow water near geostrophy: a transformational approach. J. Fluid Mech. 551, 197234.
OliverM. & VasylkevychS. 2011 Hamiltonian formalism for models of rotating shallow water in semigeostrophic scaling. J. Discrete Continuous Dyn. Syst. 31 (3), 827846.
OliverM. & VasylkevychS. 2013 Generalized LSG models with spatially varying Coriolis parameter. J. Geophys. Astrophys. Fluid Dyn. 107, 259276.
OurmiéresY., BrankartJ. M., BerlineL., BrasseurP. & VerronJ. 2006 Incremental analysis update implementation into a sequential ocean data assimilation system. J. Atmos. Ocean. Technol. 23, 17291744.
RichardsonL. F. 1922 Weather Prediction by Numerical Process. Cambridge University Press.
SalmonR. 1983 Practical use of Hamilton’s principle. J. Fluid Mech. 132, 431444.
SalmonR. 1985 New equations for nearly geostrophic flow. J. Fluid Mech. 153, 461477.
SalmonR. 1998 Lectures on Geophysical Fluid Dynamics. Oxford University Press.
SmithR. K. & DritschelD. G. 2006 Revisiting the Rossby–Haurwitz wave test case with contour advection. J. Comput. Phys. 217 (2), 473484.
ViúdezÁ. & DritschelD. G. 2004 Optimal potential vorticity balance of geophysical flows. J. Fluid Mech. 521, 343352.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 5
Total number of PDF views: 68 *
Loading metrics...

Abstract views

Total abstract views: 114 *
Loading metrics...

* Views captured on Cambridge Core between 7th June 2017 - 20th October 2017. This data will be updated every 24 hours.