Skip to main content Accesibility Help
×
×
Home

Dissipation in rapid dynamic wetting

  • A. CARLSON (a1), M. DO-QUANG (a1) and G. AMBERG (a1)
Abstract

In this article, we present a modelling approach for rapid dynamic wetting based on the phase field theory. We show that in order to model this accurately, it is important to allow for a non-equilibrium wetting boundary condition. Using a condition of this type, we obtain a direct match with experimental results reported in the literature for rapid spreading of liquid droplets on dry surfaces. By extracting the dissipation of energy and the rate of change of kinetic energy in the flow simulation, we identify a new wetting regime during the rapid phase of spreading. This is characterized by the main dissipation to be due to a re-organization of molecules at the contact line, in a diffusive or active process. This regime serves as an addition to the other wetting regimes that have previously been reported in the literature.

Copyright
Corresponding author
Email address for correspondence: andreaca@mech.kth.se
Footnotes
Hide All

Present address: Osquars Backe 18, SE-100 44 Stockholm, Sweden.

Footnotes
References
Hide All
Aarts, D. G. A. L., Lekkerkerker, H. N. W., Guo, H., Wegdam, G. H. & Bonn, D. 2005 Hydrodynamics of droplet coalescence. Phys. Rev. Lett. 95 (16), 164503.
Amberg, G., Tonhardt, R. & Winkler, C. 1999 Finite element simulations using symbolic computing. Maths. Comput. Simul. 49 (4–5), 257274.
Biance, A. L., Clanet, C. & Quere, D. 2004 First steps in the spreading of a liquid droplet. Phys. Rev. E 69 (1), 016301.
Bird, J. C., Mandre, S. & Stone, H. A. 2008 Short-time dynamics of partial wetting. Phys. Rev. Lett. 100 (23), 234501.
Blake, T. D. 2006 The physics of moving wetting lines. J. Colloid and Interface Sci. 299, 113.
Blake, T. D. & Haynes, J. M. 1969 Kinetics of liquid/liquid displacement. J. Colloid and Interface Sci. 30 (3), 421423.
Blake, T. D. & Shikhmurzaev, Y. D. 2002 Dynamic wetting by liquids of different viscosity. J. Colloid and Interface Sci. 253 (1), 196202.
Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev. Mod. Phys. 81 (2), 739805.
Briant, A. J. & Yeomans, J. M. 2004 Lattice Boltzmann simulations of contact line motion. Part II. Binary fluids. Phys. Rev. E 69 (3), 031603.
Cahn, J. W. & Hilliard, J. E. 1958 Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28 (2), 258267.
Carlson, A., Do-Quang, M. & Gustav, A. 2009 Modeling of dynamic wetting far from equilibrium. Phys. Fluids 21 (12), 12170 (14).
Carlson, A., Do-Quang, M. & Amberg, G. 2010 Droplet dynamics in a bifurcating channel. Intl J. Multiphase Flow.
Courbin, L., Bird, J. C. & Stone, H. A. 2009 Dynamics of wetting: From inertial spreading to viscous imbibtion. J. Physics, Condens. Matter 21, 464127.
Cox, R. G. 1986 The dynamics of the spreading of liquids on a solid surface. Part 1. Visocus flow. J. Fluid Mech. 168, 169194.
De Coninck, J., de Ruijter, M. J. & Voue, M. 2001 Dynamics of wetting. Curr. Opin. Colloid Interface Sci. 6 (1), 4953.
Ding, H. & Spelt, P. D. M. 2007 Wetting condition in diffuse interface simulations of contact line motion. Phys. Rev. E 75 (4), 046708.
Do-Quang, M. & Amberg, G. 2009 The splash of a solid sphere impacting on a liquid surface: Numerical simulation of the influence of wetting. Phys. Fluids 21 (2), 022102.
Do-Quang, M., Villanueva, W., Singer-Loginova, I. & Amberg, G. 2007 Parallel adaptive computation of some time-dependent materials-related microstructural problems. Bull. Polish Acad. Sci. – Tech. Sci 55 (2), 229237.
Drelich, J. & Chibowska, D. 2005 Spreading kinetics of water drops on self-assembled monolayers of thiols: Significance of inertial effects. Langmuir 21 (17), 77337738.
Eggers, J. & Evans, R. 2004 Comment on ‘Dynamic wetting by liquids of different viscosity,’ by T. D. Blake and Y. D. Shikhmurzaev. J. Colloid and Interface Sci. 280 (2), 537538.
Eggers, J., Lister, J. R. & Stone, H. A. 1999 Coalescence of liquid drops. J. Fluid Mech. 401, 293310.
de Gennes, P. G. 1985 Wetting – statics and dynamics. Rev. Mod. Phys. 57 (3), 827863.
Glasstone, S., Laidler, K. J. & Eyring, H. J. 1941 The Theory of Rate Processes. McGraw-Hill.
Guermond, J. L. & Quartapelle, L. 2000 A projection FEM for variable density incompressible flows. J. Comput. Phys. 165 (1), 167188.
Hoffman, R. L. 1975 A study of the advancing interface. I. Interface shape in liquid–gas systems. J. Colloid and Interface Sci. 50 (2), 228241.
Huh, C. & Scriven, L. E. 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid and Interface Sci. 35 (1), 85101.
Jacqmin, D. 1999 Calculation of two-phase Navier–Stokes flows using phase-field modeling. J. Comput. Phys. 155 (1), 96127.
Jacqmin, D. 2000 Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 402, 5788.
Matsumoto, S., Maruyama, S. & Saruwatari, H. 1995 A molecular dynamics simulation of a liquid droplet on a solid surface. In Proc. ASME/JSME Therm. Eng. Conf, Maui, Hawaii.
Ngan, C. G., Dussan, V. & Elizabeth, B. 1982 On the nature of the dynamic contact angle: an experimental study. J. Fluid Mech. 118, 2740.
Petrov, P. G. & Petrov, J. G. 1992 A combined molecular-hydrodynamic approach to wetting kinetics. Langmuir 8 (7), 17621767.
Qian, B., Loureiro, M., Gagnon, D. A., Tripathi, A. & Breuer, K. S. 2009 a Micron-scale droplet deposition on a hydrophobic surface using a retreating syringe. Phys. Rev. Lett. 102 (16), 164502.
Qian, T. Z., Wang, X. P. & Sheng, P. 2003 Molecular scale contact line hydrodynamics of immiscible flows. Phys. Rev. E 68 (1), 016306.
Qian, T. Z., Wang, X. P. & Sheng, P. 2004 Power-law slip profile of the moving contact line in two-phase immiscible flows. Phys. Rev. Lett. 93 (9), 094501.
Qian, T. Z., Wang, X. P. & Sheng, P. 2006 a Molecular hydrodynamics of the moving contact line in two-phase immiscible flows. Commun. Comput. Phys. 1 (1), 152.
Qian, T. Z., Wang, X. P. & Sheng, P. 2006 b A variational approach to moving contact line hydrodynamics. J. Fluid Mech. 564, 333360.
Qian, T. Z., Wu, C. M., Lei, S. L., Wang, X. P. & Sheng, P. 2009 b Modeling and simulations for molecular scale hydrodynamics of the moving contact line in immiscible two-phase flows. J. Phys., Condens. Matter 21 (46), 464119.
Ren, W. Q. & E, W. N. 2007 Boundary conditions for the moving contact line problem. Phys. Fluids 19 (2), 022101.
de Ruijter, M. J., De Coninck, J. & Oshanin, G. 1999 Droplet spreading: Partial wetting regime revisited. Langmuir 15 (6), 22092216.
Saiz, E. & Tomsia, A. P. 2004 Atomic dynamics and Marangoni films during liquid–metal spreading. Nat. Mater. 3 (12), 903909.
Seveno, D., Vaillant, A., Rioboo, R., Adao, H., Conti, J. & De Coninck, J. 2009 Dynamics of wetting revisited. Langmuir 25 (22), 1303413044.
Shikhmurzaev, Y. D. & Blake, T. D. 2004 Response to the comment on [J. Colloid Interface Sci. 253 (2002) 196] by J. Eggers and R. Evans. J. Colloid and Interface Sci. 280 (2), 539541.
Tanner, L. H. 1979 The spreading of silicone oil drops on horizontal surfaces. J. Phys. D 12, 14731484.
Villanueva, W. & Amberg, G. 2006 Some generic capillary-driven flows. Intl J. Multiphase Flow 32 (9), 10721086.
Voinov, O. V. 1976 Hydrodynamics of wetting. Izvestiya Akademii Nauk SSSP, Makhanika Zhidkosti i Gaza 5 (76–84).
Wang, X. P., Qian, T. Z. & Sheng, P. 2008 Moving contact line on chemically patterned surfaces. J. Fluid Mech. 605, 5978.
Wang, X. P. & Wang, Y. G. 2007 The sharp interface limit of a phase field model for moving contact line problem. Meth. Appl. Anal. 14 (3), 287294.
Yue, P., Zhou, C. & Feng, J. J. 2010 Sharp-interface limit of the Cahn–Hilliard model for moving contact lines. J. Fluid Mech. 645 (1), 279294.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed