Skip to main content
×
Home
    • Aa
    • Aa

An experimental study of wave run-up at a steep beach

  • ATLE JENSEN (a1), GEIR K. PEDERSEN (a1) and DEBORAH J. WOOD (a1)
Abstract

This paper presents experiments on run-up of strongly nonlinear waves on a beach of 10.54° inclination. Velocity fields are obtained by the PIV (particle image velocimetry) technique. Acceleration measurements are also attempted, but it is difficult to obtain useful results in every case. In addition, free-surface profiles are extracted from digital images and wave resistance probes. The investigation focuses on the dynamics of the early stages of the run-up, when steep fronts evolve in the vicinity of the equilibrium shoreline, but maximum run-up heights are also reported. Measurements on moderately nonlinear waves are compared to results from long-wave theories, including a numerical Boussinesq model and analytic shallow-water results from the literature. In particular the applicability of the long-wave theories is addressed. However, most attention is given to run-up of high incident solitary waves that are on the brink of breaking at the shoreline. In one case a temporarily slightly overturning wave front is found that neither develops into a plunger or displays appreciable spilling. This feature is discussed in view of measured velocity and acceleration patterns and with reference to the dam-break problem. Effects of scaling, as well as viscous damping, are also briefly discussed.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax