Skip to main content
×
Home
    • Aa
    • Aa

Dependence of the non-stationary form of Yaglom’s equation on the Schmidt number

  • P. ORLANDI (a1) and R. A. ANTONIA (a2)
Abstract

The dynamic equation for the second-order moment of a passive scalar increment is investigated in the context of DNS data for decaying isotropic turbulence at several values of the Schmidt number Sc, between 0.07 and 7. When the terms of the equation are normalized using Kolmogorov and Batchelor scales, approximate independence from Sc is achieved at sufficiently small rB (r is the separation across which the increment is estimated and ηB is the Batchelor length scale). The results imply approximate independence of the mixed velocity-scalar derivative skewness from Sc and underline the importance of the non-stationarity. At small rB, the contribution from the non-stationarity increases as Sc increases.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax