Skip to main content
×
Home
    • Aa
    • Aa

Dimensionality and morphology of particle and bubble clusters in turbulent flow

  • ENRICO CALZAVARINI (a1) (a2), MARTIN KERSCHER (a3), DETLEF LOHSE (a1) (a2) and FEDERICO TOSCHI (a4) (a2)
Abstract

We conduct numerical experiments to investigate the spatial clustering of particles and bubbles in simulations of homogeneous and isotropic turbulence. On varying the Stokes parameter and the densities, striking differences in the clustering of the particles can be observed. To quantify these visual findings we use the Kaplan–Yorke dimension. This local scaling analysis shows a dimension of approximately 1.4 for the light bubble distribution, whereas the distribution of very heavy particles shows a dimension of approximately 2.6. However, clearly different parameter combinations yield the same dimensions. To overcome this degeneracy and to further develop the understanding of clustering, we perform a morphological (geometrical and topological) analysis of the particle distribution. For such an analysis, Minkowski functionals have been successfully employed in cosmology, in order to quantify the global geometry and topology of the large-scale distribution of galaxies. In the context of dispersed multiphase flow, these Minkowski functionals – being morphological order parameters – allow us to discern the filamentary structure of the light particle distribution from the wall-like distribution of heavy particles around empty interconnected tunnels. Movies are available with the online version of the paper.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

C. Arns , M. Knackstedt & K. Mecke 2002 Characterising the morphology of disordered materials. In Morphology of Condensed Matter Physics and Geometry of Spatially Complex Systems (ed. K. R. Mecke & D. Stoyan ). Lecture Notes in Physics, vol. 600, pp. 3774. Springer.

S. Ayyalasomayajula , A. Gylfason , L. R. Collins , E. Bodenschatz & Z. Warhaft 2006 Lagrangian measurements of inertial particle accelerations in grid generated wind tunnel turbulence. Phys. Rev. Lett. 97, 144507.

A. Babiano , J. H. E. Cartwright , O. Piro & A. Provenzale 2000 Dynamics of a Small Neutrally Buoyant Sphere in a Fluid and Targeting in Hamiltonian Systems. Phys. Rev. Lett. 84, 57645769.

J. Bec 2003 Fractal clustering of inertial particles in random flows. Phys. Fluids 15, L81L84.


J. Bec , L. Biferale , G. Bofetta , A. S. Lanotte , S. Musacchio & F. Toschi 2006 aLyapunov exponents of heavy particles in turbulence. Phys. Fluids 18, 091702.

J. Bec , L. Biferale , M. Cencini , A. S. Lanotte & F. Toschi 2006 bEffects of vortex filaments on the velocity of tracers and heavy particles in turbulence. Phys. Fluids 18, 081702.

J. Bec , M. Cencini & R. Hillerbrand 2007 Heavy particles in incompressible flows: The large stokes number asymptotics. Physica D 226, 1122.

T. H. van den Berg , S. Luther , I. Mazzitelli , J. Rensen , F. Toschi & D. Lohse 2006 Bubbly turbulence. J. Turb. 7, 112.

G. P. Bewley , D. P. Lathrop & K. R. Sreenivasan 2006 Superfluid helium – visualization of quantized vortices. Nature 441, 588.

L. Biferale , G. Boffetta , A. Celani , A. Lanotte & F. Toschi 2005 Particle trapping in three-dimensional fully developed turbulence. Phys. Fluids 17, 021701.


M. Bourgoin , N. T. Ouellette , H. T. Xu , J. Berg & E. Bodenschatz 2006 The role of pair dispersion in turbulent flow. Science 311, 835838.

E. Calzavarini , T. H. van den Berg , F. Toschi & D. Lohse 2008 Quantifying microbubble clustering in turbulent flow from single-point me asurements. Phys. Fluids 20, 040702.

E. Calzavarini , M. Cencini , D. Lohse & F. Toschi 2007 Quantifying turbulence induced segregation of inertial particles. Phys. Rev. Lett. (submitted).

A. Celani , G. Falkovich , A. Mazzino & A. Seminara 2005 Droplet condensation in turbulent flows. Europhys. Lett. 70, 775781.


C. T. Crowe , T. Troutt & J. N. Chung 1996 Numerical models for two-phase turbulent flows. Annu. Rev. Fluid Mech. 28, 1143.


J. P. Eckmann & D. Ruelle 1985 Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 67, 617.


S. Elghobashi & G. Truesdell 1993 On the two-way interaction between homogeneous turbulence and dispersed solid particles. I: Turbulence modification. Phys. Fluids A 5, 17901801.

K. J. Falconer 1990 Fractal Geometry. John Wiley & Sons.

G. Falkovich , A. Fouxon & M. G. Stepanov 2002 Acceleration of rain initiation by cloud turbulence. Nature 419, 151154.

R. Gatignol 1983 The Faxen formulae for a rigid particle in an unsteady non-uniform Stokes flow. J. Méc. Théori. Appl. 1, 143160.

P. Grassberger & I. Procaccia 1984 Dimensions and entropies of strange attractors from a fluctuating dynamics approach. Physica D 13, 3454.

H. Hadwiger 1957 Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer.

S. Herminghaus , K. Jacobs , K. Mecke , J. Bischof , A. Fery , M. Ibn-Elhaj & S. Schlagowski 1998 Spinodal dewetting in liquid crystal and liquid metal films. Science 282, 916919.

K. Hoyer , M. Holzner , B. Luethi , M. Guala , A. Lieberzon & W. Kinzelback 2005 3D scanning particle tracking velocimetry. Exps. Fluids 39, 923934.

M. Kerscher 2000 Statistical analysis of large–scale structure in the Universe. In Statistical Physics and Spatial Statistics: The Art of Analyzing and Modeling Spatial Structures and Pattern Formation (ed. K. R. Mecke & D. Stoyan ). Lecture Notes in Physics, vol. 554. Springer.

M. Kerscher , K. Mecke , J. Schmalzing , C. Beisbart , T. Buchert & H. Wagner 2001 Morphological fluctuations of large–scale structure: the PSCz survey. Astron. Astrophys. 373, 111.

M. Kerscher , J. Schmalzing , J. Retzlaff , S. Borgani , T. Buchert , S. Gottlöber , V. Müller , M. Plionis & H. Wagner 1997 Minkowski functionals of Abell/ACO clusters. Mon. Not. R. Astron. Soc. 284, 7384.

E. Malkiel , J. N. Abras , E. A. Widder & J. Katz 2006 On the spatial distribution and nearest neighbor distance between particles in the water column determined from in situ holographic measurements. J. Plankton Res. 28, 149170.


M. Maxey & J. Riley 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883889.

I. Mazzitelli , D. Lohse & F. Toschi 2003 aThe effect of microbubbles on developed turbulence. Phys. Fluids 15, L5L8.


K. Mecke 2000 Additivity, convexity, and beyond: Application of minkowski functionals in statistical physics. In Statistical Physics and Spatial Statistics: The Art of Analyzing and Modeling Spatial structures and Pattern Formation (ed. K. Mecke & D. Stoyan ). Lecture Notes in Physics, vol. 554. Springer.

K. R. Mecke , T. Buchert & H. Wagner 1994 Robust morphological measures for large–scale structure in the Universe. Astron. Astrophys. 288, 697704.

K. R. Mecke & H. Wagner 1991 Euler characteristic and related measures for random geometric sets. J. Statist. Phys. 64, 843850.

A. L. Porta , G. A. Voth , A. M. Crawford , J. Alexander & E. Bodenschatz 2001 Fluid particle accelerations in fully developed turbulence. Nature 409, 10171019.

R. C. Upstill-Goddard 2006 Air-sea gas exchange in the coastal zone. Esturine Coastal Shelf Sci. 70, 388404.

P. A. Vaillancourt , M. K. Yau , P. Bartello & W. W. Grabowski 2002 Microscopic approach to cloud droplet growth by condensation. part ii: Turbulence, clustering, and condensational growth. J. Atmos. Sci. 59, 34213435.


S. L. Wilkin , C. F. Barenghi & A. Shukurov 2007 Magnetic structures produced by the small-scale dynamo. Phys. Rev. Lett. 99, 134301.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Type Description Title
VIDEO
Movies

Calzavarini et al. supplementary movie
Movie 2. Visualization of particle distribution in a turbulent flow field (Re = 75). Three-dimensional snapshot of neutrally buoyant particles with St = 0.6 and β=1.

 Video (22.2 MB)
22.2 MB
VIDEO
Movies

Calzavarini et al. supplementary movie
Movie 3. Visualization of particle distribution in a turbulent flow field (Re = 75). Three-dimensional snapshot of heavy particles with St = 0.6 and β=0.

 Video (24.0 MB)
24.0 MB
VIDEO
Movies

Calzavarini et al. supplementary movie
Movie 1. Visualization of particle distribution in a turbulent flow field (Re = 75). Three-dimensional snapshot of light particles (bubbles) with St = 0.6 and β=3. In the model system used in this numerical study, particles are characterized by two parameters: the Stokes number St (which is the ratio between the particle response time and the Kolmogorov time scale) and the parameter β which is related to the particle--fluid density ratio ( β = 3 ρ_f /(ρ_f + 2 ρ_p) ). Particles lighter than the fluid cluster in highly vortical regions, the opposite happens for heavy particles (see Movie 3), while neutrally buoyant particles remains on average homogeneously distributed (see Movie 2).

 Video (23.0 MB)
23.0 MB