Skip to main content
×
Home
    • Aa
    • Aa

Generation and breakup of Worthington jets after cavity collapse. Part 1. Jet formation

  • STEPHAN GEKLE (a1) (a2) and J. M. GORDILLO (a3)
Abstract

At the beginning of the last century Worthington and Cole discovered that the high-speed jets ejected after the impact of an axisymmetric solid on a liquid surface are intimately related to the formation and collapse of an air cavity created in the wake of the impactor. In this paper, we combine detailed boundary-integral simulations with analytical modelling to describe the formation of such Worthington jets after the impact of a circular disk on water. We extend our earlier model in Gekle et al. (Phys. Rev. Lett., vol. 102, 2009a, 034502), valid for describing only the jet base dynamics, to describe the whole jet. We find that the flow structure inside the jet may be divided into three different regions: the axial acceleration region, where the radial momentum of the incoming liquid is converted to axial momentum; the ballistic region, where fluid particles experience no further acceleration and move constantly with the velocity obtained at the end of the acceleration region; and the jet tip region, where the jet eventually breaks into droplets. From our modelling of the ballistic region we conclude that, contrary to the case of other physical situations where high-speed jets are also ejected, the types of Worthington jets studied here cannot be described using the theory of hyperbolic jets of Longuet-Higgins (J. Fluid Mech., vol. 127, 1983, p. 103). Most importantly, we find that the velocity and the shape of the ejected jets can be well predicted at any instant in time with the only knowledge of quantities obtained before pinch-off occurs. This fact allows us to provide closed expressions for the jet velocity and the sizes of the ejected droplets as a function of the velocity and the size of the impactor. We show that our results are also applicable to Worthington jets emerging after the collapse of a bubble growing from an underwater nozzle, although this system creates thicker jets than the disk impact.

Copyright
Corresponding author
Email address for correspondence: jgordill@us.es
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

J. M. Gordillo & S. Gekle 2010 Generation and breakup of Worthington jets after cavity collapse. Part 2. Tip breakup of stretched jets. J. Fluid Mech. doi:10.1017/S0022112010003538.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 55 *
Loading metrics...

Abstract views

Total abstract views: 121 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd March 2017. This data will be updated every 24 hours.