Skip to main content
×
Home
    • Aa
    • Aa

Inertial flow of a dilute suspension over cavities in a microchannel

  • Hamed Haddadi (a1) (a2) and Dino Di Carlo (a1) (a2) (a3) (a4)
Abstract

Microfluidic experiments and discrete particle simulations using the lattice-Boltzmann method are used to study interactions of finite size hard spheres and vortical flow inside confined cavities in a microchannel. The work focuses on entrapment of particles inside confined cavities and particle dynamics after entrapment. Numerical simulations and imaging of fluorescent tracers demonstrate that spiralling flow generates exchange of fluid mass between the vortical flow and the channel, contrary to the concept of a well-defined separatrix in unconfined cavities. An isolated finite size particle entrapped in the cavity migrates towards a stable orbit, i.e. a limit cycle trajectory. The topology of the limit cycle depends on cavity size, particle diameter and flow inertia, represented by Reynolds number. By studying various factors affecting the acceleration of a particle before entrapment, it is discussed that entrapment is a collective effect of flow morphology and particle dynamics. The effect of hydrodynamic interaction between particles inside the cavity, which results in deviation from the stable limit cycle orbit and depletion of cavities, will also be discussed. It is shown that a wall-confined microcavity entraps particles based on particle size, therefore it provides a platform for microfiltration.

Copyright
Corresponding author
Email address for correspondence: haddadi@ucla.edu
References
Hide All
AidunC. K. & ClausenJ. R. 2010 Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42, 439472.
AidunC. K., LuY. & DingE. J. 1998 Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J. Fluid Mech. 373, 287311.
AminiH., SollierE., MasaeliM., YuX., GanapathysubramanianB., StoneH. & Di CarloD. 2013 Engineering fluid flow using sequenced microstructures. Nat. Commun. 4, 18261834.
AnnaS., BontouxN. & StoneH. 2003 Formation of dispersions using flow focusing in microchannels. Appl. Phys. Lett. 82, 364.
ArdekaniA. & RangelR. H. 2008 Numerical investigation of particle-particle and particle-wall collisions in a viscous fluid. J. Fluid Mech. 596, 437466.
AsmolovE. S. 1999 The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J. Fluid Mech. 381, 6387.
BatchelorG. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
BerkowitzB. 2002 Characterizing flow and transport in fractured geological media: a review. Adv. Water Resour. 25, 861884.
BernateJ., LiuC., LagaeL., KonstantopoulosK. & DrazerG. 2013 Vector separation of particles and cells using an array of slanted open cavities. Lab on a Chip 13, 10861092.
BluesteinD., GutierrezC., LondonoM. & SchoephoersterR. T. 1999 Vortex shedding in steady flow through a model of an arterial stenosis and its relevance to mural platelet deposition. Ann. Biomed. Engng 27, 763773.
ChunB. & LaddA. C. J. 2006 Inertial migration of neutrally buoyant particles in a square duct: an investigation of multiple equilibrium positions. Phys. Fluids 18, 031704.
CitroV., GiannettiF., BrandtL. & LuchiniP. 2015 Linear three-dimensional global and asymptotic stability analysis of incompressible open cavity flow. J. Fluid Mech. 768, 113140.
CoxR. G. & BrennerH. 1968 The lateral migration of solid particles in Poiseuille flow – I theory. Chem. Eng. Sci. 23, 147173.
Di CarloD., EddJ. F., HumphryJ. K., StoneH. A. & TonnerM. 2009 Particle segregation and dynamics in confined flows. Phys. Rev. Lett. 102, 094503.
GossettD. R., TseH. T. K., LeeS. A., YingY., LindgrenA. G., YangO. O., RaoJ., ClarkA. T. & Di CarloD. 2012 Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc. Natl Acad. Sci. USA 109, 76307635.
HaddadiH. & MorrisJ. F. 2014 Microstructure and rheology of finite inertia neutrally buoyant suspensions. J. Fluid Mech. 749, 431459.
HaddadiH., Shojaei-ZadehS., ConningtonK. & MorrisJ. F. 2014 Suspension flow past a cylinder: particle interactions with recirculating wakes. J. Fluid Mech. 760, R2.
HaddadiH., Shojaei-ZadehS. & MorrisJ. F. 2016 Lattice-Boltzmann simulation of inertial particle-laden flow around an obstacle. Phys. Rev. Fluids 1, 024201.
HoB. P. & LealL. G. 1974 Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech. 65, 365400.
HoodK., LeeS. & RoperM. 2015 Inertial migration of a rigid sphere in three-dimensional Poiseuille flow. J. Fluid Mech. 765, 452479.
HornerM., MetcalfeG. & OttinoJ. M. 2015 Convection-enhanced transport into open cavities. Cardiovascular Engng Technol. 6, 352363.
HornerM., MetcalfeG., WigginsG. & OttinoJ. M. 2002 Transport enhancement mechanisms in open cavities. J. Fluid Mech. 452, 199229.
HurS. C., MachA. J. & Di CarloD. 2011 High-throughput size-based rare cell enrichment using microscale vortices. Biomicrofluidics 5, 022206.
JanaS. C., MetcalfeG. & OttinoJ. M. 1994 Experimental and computational studies of mixing in complex Stokes flows: the vortex mixing flow and multicellular cavity flows. J. Fluid Mech. 269, 199246.
JeongJ. & HussainF. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.
KahkeshaniS., HaddadiH. & Di CarloD. 2016 Preferred interparticle spacings in trains of particles in inertial microchannel flows. J. Fluid Mech. 786, R3.
KarinoT. & GoldsmithH. L. 1977 Flow behaviour of blood cells and rigid spheres in an annular vortex. Phil. Trans. R. Soc. 279, 413445.
KumarA. & GrahamM. D. 2015 Mechanism of margination in confined flows of blood and other multicomponent suspensions. Phys. Rev. Lett. 109, 108102.
KumarA., RiveraR. G. H. & GrahamM. D. 2014 Flow-induced segregation in confined multicomponent suspensions: effects of particle size and rigidity. J. Fluid Mech. 738, 423462.
LaddA. J. C. 1994a Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 271, 285309.
LaddA. J. C. 1994b Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J. Fluid Mech. 271, 311339.
LeeW., AminiH., StoneH. & Di CarloD. 2010 Dynamic self-assembly and control of microfluidic particle crystals. Proc. Natl Acad. Sci. USA 107, 2241322418.
ManoorkarS., SedesO. & MorrisJ. F. 2016 Particle transport in laboratory models of bifurcating fractures. J. Natural Gas Sci. Engng 33, 11691180.
MatasJ. P., GlezerV., GuazzelliE. & MorrisJ. F. 2004 Trains of particles in finite-Reynolds-number pipe flow. Phys. Fluids 16, 41924195.
MatasJ. P., GlezerV., GuazzelliE. & MorrisJ. F. 2009 Inertial migration of rigid spherical particles in Poiseuille flow. J. Fluid Mech. 515, 171195.
MaxeyM. R. & RileyJ. J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883889.
McDonaldJ. C., DuffyD. C., AndersonJ. R., ChiuD. T., WuH., SchuellerO. A. J. & WhitesidesG. M. 2000 Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21, 2740.
MiuraK., ItanoT. & Sugihara-SekiM. 2014 Inertial migration of neutrally buoyant spheres in a pressure-driven flow through square channels. J. Fluid Mech. 749, 320330.
MoffattH. K. 1964 Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18, 118.
NakagawaN., YabuT., OtomoR., AtsushiK., MasatoM., TamoakiI. & Sugihara-SekiM. 2015 Inertial migration of a spherical particle in laminar square channel flows from low to high-Reynolds numbers. J. Fluid Mech. 779, 776793.
NguyenN. Q. & LaddA. J. C. 2002 Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. Phys. Rev. E 66, 046708.
RayzV., BousselL., LawstonM., Acevedo-BoltonD., GeL., YoungW., HigashidaR. & SalonerD. 2008 Numerical modeling of the flow in intracranial aneurysms: prediction of regions prone to thrombus formation. Ann. Biomed. Engng 36, 17931804.
RisbudS. R. & DrazerH. 2014 Directional locking in deterministic lateral-displacement microfluidic separation systems. Phys. Fluids 90, 012302.
SaffmanP. G. T. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22, 385400.
SegréG. & SilberbergA. 1961 Radial particle displacements in Poiseuille flow of suspensions. Nature 189, 209210.
SegréG. & SilberbergA. 1962 Behaviour of macroscopic rigid spheres in Poiseuille flow. Part 1. Determination of local concentration by statistical analysis of particle passages through crossed light beams. J. Fluid Mech. 14, 115135.
ShankarP. N. & DeshpandeM. D. 2000 Fluid mechanics in the driven cavity. Annu. Rev. Fluid Mech. 136, 93136.
SinhaK. & GrahamM. D. 2016 Shape-mediated margination and demargination in flowing multicomponent suspensions of deformable capsules. Soft Matter 12, 16831700.
SollierE., GoD. E., CheJ., GossettD. R., O’ByrneS., WeaverW. M., KummerN., RettigM., GoldmanJ., NickolsN. et al. 2014 Size-selective collection of circulating tumor cells using Vortex technology. Lab on a Chip 14, 6377.
SubramanianG. & BradyJ. F. 2006 Trajectory analysis for non-Brownian inertial suspensions in simple shear flow. J. Fluid Mech. 559, 151203.
TanedaS. 1956a Experimental observation of the wake behind a sphere at low Reynolds numbers. J. Phys. Soc. Japan 11, 11041108.
TanedaS. 1956b Experimental observation of the wake behind cylinders and plates at low Reynolds numbers. J. Phys. Soc. Japan 11, 302307.
VigoloD., GroffithsI., RadlS. & StoneH. 2013 An experimental and theoretical investigation of particle-wall impacts in a T-junction. J. Fluid Mech. 727, 236255.
VigoloD., RadlS. & StoneH. 2014 Unexpected trapping of particles in a T junction. Proc. Natl Acad. Sci. USA 111, 47704775.
WereleyS. T. & LueptowR. M. 1999 Velocity field for Taylor–Couette flow with an axial flow. Phys. Fluids 11, 3637.
WilliamsP. T. & BakerA. J. 1997 Numerical simulation of laminar flow over a 3D backward-facing step. Intl J. Numer. Flow Fluids 24, 11591183.
Zurita-GotorM., BlawzdziewiczJ. & WajnrybE. 2007 Swapping trajectories: a new wall-induced cross-streamline particle migration mechanism in a dilute suspension of spheres. J. Fluid Mech. 592, 447469.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Type Description Title
VIDEO
Movies

Haddadi and Di Carlo supplementary movie
Magnified near wall region to probe possibility of wall collision at Re = 185

 Video (967 KB)
967 KB
VIDEO
Movies

Haddadi and Di Carlo supplementary movie
The limit cycle inside $\lambda = 2.02$ cavity at Re = 123

 Video (1.9 MB)
1.9 MB
VIDEO
Movies

Haddadi and Di Carlo supplementary movie
The limit cycle inside $\lambda = 5$ cavity at Re = 216

 Video (1.5 MB)
1.5 MB
VIDEO
Movies

Haddadi and Di Carlo supplementary movie
Simulation of fluid tracers shows break down of the separatrix

 Video (2.3 MB)
2.3 MB
VIDEO
Movies

Haddadi and Di Carlo supplementary movie
The limit cycle inside $\lambda = 2.02$ cavity at Re = 216

 Video (3.4 MB)
3.4 MB
VIDEO
Movies

Haddadi and Di Carlo supplementay movie
Magnified near wall region to probe possibility of wall collision at Re = 308

 Video (830 KB)
830 KB
VIDEO
Movies

Haddadi and Di Carlo supplementary movie
The limit cycle inside $\lambda = 3$ cavity at Re = 216

 Video (3.1 MB)
3.1 MB
VIDEO
Movies

Haddadi and Di Carlo supplementary movie
Simulation of fluid tracers shows break down of the separatrix

 Video (3.2 MB)
3.2 MB
VIDEO
Movies

Haddadi and Di Carlo supplementary movie
Fluorescent imaging of near wall zone at Re = 216 shows break down of the separatrix

 Video (8.7 MB)
8.7 MB
VIDEO
Movies

Haddadi and Di Carlo supplementary movie
Magnified near wall region to probe possibility of wall collision at Re = 185

 Video (942 KB)
942 KB
VIDEO
Movies

Haddadi and Di Carlo supplementary movie
The limit cycle inside $\lambda = 3$ cavity at Re = 216

 Video (3.4 MB)
3.4 MB
VIDEO
Movies

Haddadi and Di Carlo supplementary movie
The limit cycle inside $\lambda = 2.02$ cavity at Re = 216

 Video (1.8 MB)
1.8 MB
VIDEO
Movies

Haddadi and Di Carlo supplementary movie
The limit cycle inside $\lambda = 3$ cavity at Re = 123

 Video (10.7 MB)
10.7 MB
VIDEO
Movies

Haddadi and Di Carlo supplementary movie
(Supplementary)

 Video (42.2 MB)
42.2 MB
VIDEO
Movies

Haddadi and Di Carlo supplementary movie
The limit cycle inside $\lambda = 5$ cavity at Re = 123

 Video (1.0 MB)
1.0 MB
VIDEO
Movies

Haddadi and Di Carlo supplementary movie
Fluorescent imaging of near wall zone at Re = 128 shows break down of the separatrix

 Video (10.6 MB)
10.6 MB
VIDEO
Movies

Haddadi and Di Carlo supplementary movie
Magnified near wall region to probe possibility of wall collision at Re = 246

 Video (1.2 MB)
1.2 MB
VIDEO
Movies

Haddadi and Di Carlo supplementay movie
Magnified near wall region to probe possibility of wall collision at Re = 308

 Video (879 KB)
879 KB
VIDEO
Movies

Haddadi and Di Carlo supplementary movie
Magnified near wall region to probe possibility of wall collision at Re = 246

 Video (1.3 MB)
1.3 MB
VIDEO
Movies

Haddadi and Di Carlo supplementary movie
Fluorescent imaging of near wall zone at Re = 86 shows formation of a clear bifurcation

 Video (7.7 MB)
7.7 MB
VIDEO
Movies

Haddadi and Di Carlo supplementary movie
Fluorescent imaging of near wall zone at Re = 216 shows break down of the separatrix

 Video (17.9 MB)
17.9 MB
VIDEO
Movies

Haddadi and Di Carlo supplementary movie
The limit cycle inside $\lambda = 2.02$ cavity at Re = 123

 Video (1.6 MB)
1.6 MB
VIDEO
Movies

Haddadi and Di Carlo supplementary movie
Fluorescent imaging of near wall zone at Re = 128 shows break down of the separatrix

 Video (4.9 MB)
4.9 MB
VIDEO
Movies

Haddadi and Di Carlo supplementary movie
The limit cycle inside $\lambda = 5$ cavity at Re = 216

 Video (1.7 MB)
1.7 MB
VIDEO
Movies

Haddadi and Di Carlo supplementary movie
The limit cycle inside $\lambda = 5$ cavity at Re = 123

 Video (1.7 MB)
1.7 MB
VIDEO
Movies

Haddadi and Di Carlo supplementary movie
(Supplementary)

 Video (36.1 MB)
36.1 MB
VIDEO
Movies

Haddadi and Di Carlo supplementary movie
The limit cycle inside $\lambda = 3$ cavity at Re = 123

 Video (4.5 MB)
4.5 MB
VIDEO
Movies

Haddadi and Di Carlo supplementary movie
Fluorescent imaging of near wall zone at Re = 86 shows formation of a clear bifurcation

 Video (14.1 MB)
14.1 MB

Metrics

Full text views

Total number of HTML views: 33
Total number of PDF views: 310 *
Loading metrics...

Abstract views

Total abstract views: 751 *
Loading metrics...

* Views captured on Cambridge Core between 13th December 2016 - 23rd October 2017. This data will be updated every 24 hours.