Skip to main content
×
Home
    • Aa
    • Aa

Nonlinear gas oscillations in pipes. Part 2. Experiment

  • B. Sturtevant (a1)
Abstract

Forced nonlinear acoustic oscillations near the resonant frequency of closed and open tubes are studied experimentally. In particular, the motion in tubes terminated with different orifice plates is studied, and comparison is made with second- and third-order theories of the motion which contain an adjustable end-wall reflexion coefficient.

It is found that oscillations at resonance in an open tube exhibit remarkably large amplitudes despite the fact that in some cases shock waves are emitted from the open end. For oscillations at resonance in a closed tube, the effect of substituting an orifice plate for the solid end wall is to reduce the amplitude and thicken the compressive portion of the shock waves which occur under these conditions. In both the open-tube and closed-tube experiments the reflexion coefficients which are evaluated by fitting theory to experiment are found to increase with increasing amplitude, in agreement with the observations of previous investigators (Ingard & Ising 1967). In fact, for the open end the same linear dependence upon amplitude is observed, but the constant of proportionality is different. Qualitative differences are observed between the reflexion coefficients of a given orifice at the open-end and the closed-end resonant frequencies; at the open-end frequency the reflexion from the given orifice is less ideal than at the closed-end frequency. The implications of reflexion coefficients dependent on the wave forms are discussed.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax