Skip to main content
×
×
Home

Splash behaviour and oily marine aerosol production by raindrops impacting oil slicks

  • David W. Murphy (a1), Cheng Li (a1), Vincent d’Albignac (a1), David Morra (a1) and Joseph Katz (a1)...
Abstract

The high-speed impact of a droplet on a bulk fluid at high Weber number (We) is not well understood but is relevant to the production of marine aerosol by raindrop impact on the sea surface. These splashes produce a subsurface cavity and a crown which closes into a bubble canopy, but a floating layer of immiscible oil, such as a crude oil slick, alters the splash dynamics. The effects of oil layer fluid properties and thickness, droplet size and impact speed are examined by high-speed visualization. Oil layer rupture and crown behaviour are classified by dimensional scaling. The subsurface cavity volume for impact on thick layers is shown to depend on the Reynolds number (Re), although canopy formation at high Re introduces a competing We effect since rapid canopy closure is found to retard cavity expansion. Time-resolved kinematic measurements show that thin crude oil slicks similarly alter crown closure and cavity growth. The size and spatial distributions of airborne droplets are examined using high-speed holographic microscopy. The droplets have a bimodal distribution with peaks at 50 and $225~{\rm\mu}\text{m}$ and are clustered by size at different elevation angles. Small droplets ( $50~{\rm\mu}\text{m}$ ) are ejected primarily at shallow angles, indicating production by splashing within the first $100~{\rm\mu}\text{s}$ and by breakup of microligaments. Larger droplets ( $225~{\rm\mu}\text{m}$ ) are found at steeper elevation angles, indicating later production by capillary instability acting on large ligaments protruding upward from the crown. Intermittent droplet release while the ligaments grow and sweep upward is thought to contribute to the size-dependent spatial ordering. Greater numbers of small droplets are produced at high elevation angles when a crude oil layer is present, indicating satellite droplet formation from ligament breakup. A crude oil layer also increases the target fluid Ohnesorge number, leading to creation of an intact ejecta sheet, which then ruptures to form aerosolized oil droplets.

Copyright
Corresponding author
Email address for correspondence: katz@jhu.edu
References
Hide All
Aeppli C., Nelson R. K., Radović J. R., Carmichael C. A., Valentine D. L. & Reddy C. M. 2014 Recalcitrance and degradation of petroleum biomarkers upon abiotic and biotic natural weathering of Deepwater Horizon oil. Environ. Sci. Technol. 48, 67266734.
Afeti G. M. & Resch F. J. 1990 Distribution of the liquid aerosol produced from bursting bubbles in sea and distilled water. Tellus 42 B, 378384.
Agbaglah G. & Deegan R. D. 2014 Growth and instability of the liquid rim in the crown splash regime. J. Fluid Mech. 752, 485496.
Agbaglah G., Thoraval M. J., Thoroddsen S. T., Zhang L. V., Fezzaa K. & Deegan R. D. 2015 Drop impact into a deep pool: vortex shedding and jet formation. J. Fluid Mech. 764, R1.
Aguilera F., Méndez J., Pásaro E. & Laffon B. 2010 Review on the effects of exposure to spilled oils on human health. J. Appl. Toxicol 30, 291301.
Alm S. R., Reichard D. L. & Hall F. R. 1987 Effects of spray drop size and distribution of drops containing bifenthrin on Tetranychus urticae (Acari: Tetranychidae). J. Econ. Entomol. 80, 517520.
Amador G. J., Yamada Y., McCurley M. & Hu D. L. 2013 Splash-cup plants accelerate raindrops to disperse seeds. J. R. Soc. Interface 10, 112.
Bauget F., Langevin D. & Lenormand R. 2001 Dynamic surface properties of asphaltenes and resins at the oil–air interface. J. Colloid Interface Sci. 239, 501508.
Bernardin J. D., Stebbins C. J. & Mudawar I. 1997 Mapping of impact and heat transfer regimes of water drops impinging on a polished surface. Intl J. Heat Mass Transfer 40 (2), 247267.
Bisighini A., Cossali G. E., Tropea C. & Roisman I. V. 2010 Crater evolution after the impact of a drop onto a semi-infinite liquid target. Phys. Rev. E 82, 036319.
Blanchard D. C. 1989 The ejection of drops from the sea and their enrichment with bacteria and other materials: a review. Estuaries 12 (3), 127137.
Blanchard D. C. & Woodcock A. H. 1957 Bubble formation and modification in the sea and its meteorological significance. Tellus 9 (2), 145158.
Bremond N. & Villermaux E. 2006 Atomization by jet impact. J. Fluid Mech. 549, 273306.
Cai Y. K. 1989 Phenomena of a liquid drop falling to a liquid surface. Exp. Fluids 7, 388394.
Chapman D. S. & Critchlow P. R. 1967 Formation of vortex rings from falling drops. J. Fluid Mech. 29, 177185.
Cheng Y. S., Zhou Y., Irvin C. M., Pierce R. H., Naar J., Backer L. C., Fleming L. E., Kirkpatrick B. & Baden D. G. 2005 Characterization of marine aerosol for assessment of human exposure to brevetoxins. Environ. Health Perspect. 113 (5), 638643.
Clanet C. 2007 Waterbells and liquid sheets. Annu. Rev. Fluid Mech. 39, 469496.
Cossali G. E., Coghe A. & Marengo M. 1997 The impact of a single drop on a wetted solid surface. Exp. Fluids 22, 463472.
Csanady G. T. 2001 Air–Sea Interaction: Laws and Mechanisms. Cambridge University Press.
Deegan R. D., Brunet P. & Eggers J. 2008 Complexities of splashing. Nonlinearity 21, C1C11.
Delvigne G. A. L. & Sweeney C. E. 1988 Natural dispersion of oil. Oil Chem. Pollut. 4, 281310.
Deng Q., Anilkumar A. V. & Wang T. G. 2007 The role of viscosity and surface tension in bubble entrapment during drop impact onto a deep liquid pool. J. Fluid Mech. 578, 119138.
Donnelly R. J. & Glaberson W. 1966 Experiments on the capillary instability of a liquid jet. Proc. R. Soc. Lond. A 290 (1423), 547556.
Eggers J. & Villermaux E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71, 036601.
Ehrenhauser F. S., Avij P., Shu X., Dugas V., Woodson I., Liyana-Arachchi T., Zhang Z., Hung F. R. & Valsaraj K. T. 2014 Bubble bursting as an aerosol generation mechanism during an oil spill in the deep-sea environment: laboratory experimental demonstration of the transport pathway. R. Soc. Chem. 16, 6573.
Ellison W. D. 1944 Studies of raindrop erosion. Agr. Engng 25, 131136.
Elmore P. A., Chahine G. L. & Oguz H. N. 2001 Cavity and flow measurements of reproducible bubble entrainment following drop impacts. Exp. Fluids 31, 664673.
Engel O. G. 1966 Crater depth in fluid impacts. J. Appl. Phys. 37 (4), 17981808.
Engel O. G. 1967 Initial pressure, initial flow velocity, and the time dependence of crater depth in fluid impacts. J. Appl. Phys. 38 (10), 39353940.
Esmailizadeh L. & Mesler R. 1986 Bubble entrainment with drops. J. Colloid Interface Sci. 110 (2), 561574.
Farooq U., Simon S., Tweheyo M. E., Øye G. & Sjöblom J. 2013 Interfacial tension measurements between oil fractions of a crude oil and aqueous solutions with different ionic composition and pH. J. Disper. Sci. Technol. 34, 701708.
Fedorchenko A. I. & Wang A. 2004 On some common features of drop impact on liquid surfaces. Phys. Fluids 16 (5), 13491365.
Fingas M. 2013 The Basics of Oil Spill Cleanup. Taylor & Francis.
Fitt B. D. L., McCartney H. A. & Walklate P. J. 1989 The role of rain in dispersal of pathogen inoculum. Annu. Rev. Phytopathol. 27, 241271.
Franklin B., Brownrigg W. & Farish 1774 Of the stilling of waves by means of oil. Extracted from Sundry Letters between Benjamin Franklin, LL. D. F. R. S., William Brownrigg, M. D. F. R. S. and the Reverend Mr Farish. Phil. Trans. 64, 445460.
Franz G. J. 1959 Splashes as sources of sound in liquids. J. Acoust. Soc. Am. 31 (8), 10801096.
Freer E. M. & Radke C. J. 2004 Relaxation of asphaltenes at the toluene/water interface: diffusion exchange and surface rearrangement. J. Adhes. 80, 481496.
Fujimatsu T., Fujita H., Hirota M. & Okada O. 2003 Interfacial deformation between an impacting water drop and a silicone-oil surface. J. Colloid Interface Sci. 264, 212220.
Gopalan B. & Katz J. 2010 Turbulent shearing of crude oil mixed with dispersants generates long microthreads and microdroplets. Phys. Rev. Lett. 104, 054501.
Grimaldi C. S. L., Coviello I., Lacava N., Pergola N. & Tramutoli V. 2011 A new RST-based approach for continuous oil spill detection in TIR range: the case of the Deepwater Horizon platform in the Gulf of Mexico. In Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise (ed. Ji Z. G., Liu Y., MacFayden A. & Wesiberg R. H.), pp. 5161. American Geophysical Union.
Guildenbecher D. R., Engvall L., Gao J., Grasser T. W., Reu P. L. & Chen J. 2014 Digital in-line holography to quantify secondary droplets from the impact of a single drop on a thin film. Exp. Fluids 55, 1670.
Guillot P., Colin A., Utada A. S. & Ajdari A. 2007 Stability of a jet in a confined pressure-driven biphasic flow at low Reynolds numbers. Phys. Rev. Lett. 99, 104502.
Gunn R. & Kinzer G. D. 1949 The terminal velocity of fall for water droplets in stagnant air. J. Meteorol. 6, 243248.
Hallet J. & Christensen L. 1984 Splash and penetration of drops in water. J. Rech. Atmosph. 18 (4), 225242.
Hardy J. T. 1982 The sea surface microlayer: biology, chemistry and anthropogenic enrichment. Prog. Oceanogr. 11, 307328.
Harvey E. 1925 The surface tension of crude oils. Ind. Engng Chem. 17 (1), 8585.
Hines R. L. 1966 Electrostatic atomization and spray painting. J. Appl. Phys. 37 (7), 27302735.
Hobbs P. V. & Osheroff T. 1967 Splashing of drops on shallow liquids. Science 158, 11841186.
Hsiao M., Lichter S. & Quintero L. G. 1988 The critical Weber number for vortex and jet formation for drops impinging on a liquid pool. Phys. Fluids 31 (12), 35603562.
Hu Y. T., Pine D. J. & Leal G. 2000 Drop deformation, breakup, and coalescence with compatibilizer. Phys. Fluids 12 (3), 484489.
Javadi A., Eggers J., Bonn D., Habibi M. & Ribe N. M. 2013 Delayed capillary breakup of falling viscous jets. Phys. Rev. Lett. 11, 144501.
Katz J. & Sheng J. 2010 Applications of holography in fluid mechanics and particle dynamics. Annu. Rev. Fluid Mech. 42, 531555.
Khaleeq-ur-Rahman M. & Saunders C. P. R. 1988 Corona from splashing water drops. J. Atmos. Terr. Phys. 50 (6), 545555.
Kientzler C. F., Arons A. B., Blanchard D. C. & Woodcock A. H. 1954 Photographic investigation of the projection of droplets by bubbles bursting at a water surface. Tellus 6 (1), 305658.
Kowalewski T. A. 1996 On the separation of droplets from a liquid jet. Fluid Dyn. Res. 17, 121145.
Krechetnikov R. & Homsy G. M. 2009 Crown-forming instability phenomena in the drop splash problem. J. Colloid Interface Sci. 331, 555559.
Leng L. J. 2001 Splash formation by spherical drops. J. Fluid Mech. 427, 73105.
Levin Z. & Hobbs P. V. 1971 Splashing of water drops on solid and wetted surfaces: hydrodynamics and charge separation. Phil. Trans. R. Soc. Lond. A 269, 555585.
Lewis E. R. & Schwartz S. E. 2004 Sea Salt Aerosol Production: Mechanisms, Methods, Measurements and Models – A Critical Review. American Geophysical Union.
Lhuissier H., Sun C., Prosperetti A. & Lohse D. 2013 Drop fragmentation at impact onto a bath of an immiscible liquid. Phys. Rev. Lett. 110, 264503.
Lhuissier H. & Villermaux E. 2012 Bursting bubble aerosols. J. Fluid Mech. 696, 544.
Li M. & Garrett C. 1998 The relationship between oil droplet size and upper ocean turbulence. Mar. Pollut. Bull. 36 (12), 961970.
Li Z., Lee K., King T., Boufadel M. C. & Venosa A. D. 2008 Assessment of chemical dispersant effectiveness in a wave tank under regular non-breaking and breaking wave conditions. Mar. Pollut. Bull. 56, 903912.
Liow J. L. & Cole D. E. 2007 Bubble entrapment mechanisms during the impact of a water drop. In 16th Australasian Fluid Mechanics Conference, Gold Coast, Queensland, 3–7 December, 2007 (ed. Jacobs P., McIntyre T., Cleary M., Buttsworth D., Mee D., Clements R., Morgan R. & Lemckert C.), pp. 866869. School of Engineering, The University of Queensland.
Liow J. L. & Cole D. E. 2009 High framing rate PIV studies of an impinging water drop. In 28th International Congress on High-Speed Imaging and Photonics, International Society for Optics and Photonics.
Macklin W. C. & Hobbs P. V. 1969 Subsurface phenomena and the splashing of drops on shallow liquids. Science 166, 107108.
Macklin W. C. & Metaxas G. J. 1976 Splashing of drops on liquid layers. J. Appl. Phys. 47 (9), 39633970.
Malkiel E., Sheng J., Katz J. & Strickler R. 2003 The three-dimensional flow field generated by a feeding calanoid copepod measured using digital holography. J. Expl Biol. 206, 36573666.
Marmottant P., Villermaux E. & Clanet C. 2000 Transient surface tension of an expanding liquid sheet. J. Colloid Interface Sci. 230, 2940.
Medwin H., Nystuen J. A., Jacobus P. W., Ostwald L. H. & Snyder D. E. 1992 The anatomy of underwater rain noise. J. Acoust. Soc. Am. 92 (3), 16131623.
Morton D., Rudman M. & Leng J. L. 2000 An investigation of the flow regimes resulting from splashing drops. Phys. Fluids 12 (4), 747763.
Oguz H. N. & Propseretti A. 1990 Bubble entrainment by the impacts of drops on liquid surfaces. J. Fluid Mech. 219, 143179.
Okawa T., Shiraishi T. & Mori T. 2006 Production of secondary drops during the single water drop impact onto a plane surface. Exp. Fluids 41, 965974.
Pelz O., Brown J., Huddleston M., Rand G., Gardinali P., Stubblefield W., BenKinney M. T. & Ahnell A.2011 Selection of a surrogate MC252 oil as a reference material for future aquatic toxicity tests and other studies. In SETAC 2011 Meeting, Boston, MA.
Prather K. A., Bertram T. H., Grassian V. H., Deane G. B., Stokes M. D., DeMott P. J., Aluwihare L. I., Palenik B. P., Azam F., Seinfeld J. H., Moffet R. C., Molina M. J., Cappa C. D., Geiger F. M., Roberts G. C., Russell L. M., Ault A. P., Baltrusaitis J., Collins D. B., Corrigan C. E., Cuadra-Rodriguez L. A., Ebben C. J., Forestieri S. D., Guasco T. L., Hersey S. P., Kim M. J., Lambert W. F., Modini R. L., Mui W., Pedler B. E., Ruppel M. J., Ryder O. S., Schoepp N. G., Sullivan R. C. & Zhao D. 2013 Bringing the complexity of the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. Proc. Natl Acad. Sci. USA 110, 75507555.
Pumphrey H. C. & Elmore P. A. 1990 The entrainment of bubbles by drop impacts. J. Fluid Mech. 220, 539567.
Reichert M. D. & Walker L. M. 2013 Interfacial tension dynamics, interfacial mechanics, and response to rapid dilution of bulk surfactant of a model oil–water–dispersant system. Langmuir 29, 18571867.
Rein M. 1993 Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12, 6193.
Rein M. 1996 The transitional regime between coalescing and splashing drops. J. Fluid Mech. 306, 145165.
Resch F. J. & Afeti G. M. 1991 Film drop distributions from bubbles bursting in seawater. J. Geophys. Res. 96 (C6), 1068110688.
Resch F. J., Darrozes J. S. & Afeti G. M. 1986 Marine liquid aerosol production from bursting of air bubbles. J. Geophys. Res. 91 (C1), 10191029.
Riehm D. A. & McCormick A. V. 2014 The role of dispersants’ dynamic interfacial tension in effective crude oil spill dispersion. Mar. Pollut. Bull. 84, 155163.
Rioboo R., Bauthier C., Conti J., Voué M. & De Coninck J. 2003 Experimental investigation of splash and crown formation during single drop impact on wetted surfaces. Exp. Fluids 35, 648652.
Rotenberg Y., Boruvka L. & Neumann A. W. 1983 Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces. J. Colloid Interface Sci. 93 (1), 169183.
van de Sande E., Smith J. M. & van Oord J. J. J. 1974 Energy transfer and cavity formation in liquid-drop collisions. J. Appl. Phys. 45 (2), 748753.
Schneider C. A., Rasband W. S. & Eliceiri K. W. 2012 NIH image to imageJ: 25 years of image analysis. Nat. Meth. 9 (7), 671675.
Sheng J., Malkiel E. & Katz J. 2006 Digital holographic microscope for measuring three-dimensional particle distributions and motions. Appl. Opt. 45 (16), 38933901.
Shetabivash H., Ommi F. & Heidarinejad G. 2014 Numerical analysis of droplet impact onto liquid film. Phys. Fluids 26, 012102.
Sigler J. & Mesler R. 1989 The behavior of a gas film formed upon drop impact with a liquid surface. J. Colloid Interface Sci. 134 (2), 459474.
Snyder D. E.1990 Characteristics of sound radiation from large raindrops. PhD thesis, Naval Postgraduate School.
Song B. & Springer J. 1996 Determination of interfacial tension from the profile of a pendant drop using computer-aided image processing. 1. Theoretical. J. Colloid Interface Sci. 184, 6476.
Stone H. 1994 Dynamics of drop deformation and breakup in viscous fluids. Annu. Rev. Fluid Mech. 26, 65102.
Stow C. D. & Stainer R. D. 1977 The physical products of a splashing water drop. J. Met. Soc. Japan 55 (5), 518532.
Talapatra S., Hong J., McFarland M., Nayak A., Zhang C., Katz J., Sullivan J., Twardowski M., Rines J. & Donaghay P. 2013 Characterization of biophysical interactions in the water column using in situ digital holography. Mar. Ecol. Prog. Ser. 473, 2951.
Talapatra S. & Katz J. 2013 Three-dimensional velocity measurements in a roughness sublayer using microscopic digital in-line holography and optical index matching. Meas. Sci. Technol. 24, 024004.
Taylor G. I. 1934 The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. A 146, 501523.
Teal J. M. & Howarth R. W. 1984 Oil spill studies: a review of ecological effects. Environ. Manage. 8 (1), 2744.
Tervahattu H., Hartonen K., Kerminen V., Kupiainen K., Aarnio P., Koskentalo T., Tuck A. & Vaida V. 2002 New evidence of an organic layer on marine aerosols. J. Geophys. Res. 107 (D7), 4053.
Thoraval M. J., Takehara K., Etoh T. G., Popinet S., Ray P., Josserand C. & Thoroddsen S. T. 2012 von Kármán vortex street within an impacting drop. Phys. Rev. Lett. 108, 264506.
Thoraval M. J., Takehara K., Etoh T. G. & Thoroddsen S. T. 2013 Drop impact entrapment of bubble rings. J. Fluid Mech. 724, 235258.
Thoroddsen S. T. 2002 The ejecta sheet generated by the impact of a drop. J. Fluid Mech. 451, 373381.
Thoroddsen S. T., Thoraval M.-J., Takehara K. & Etoh T. G. 2011 Droplet splashing by a slingshot mechanism. Phys. Rev. Lett. 106, 034501.
Thoroddsen S. T., Thoraval M. J., Takehara K. & Etoh T. G. 2012 Micro-bubble morphologies following drop impacts onto a pool surface. J. Fluid Mech. 708, 469479.
Thorpe S. A. 1995 Vertical dispersion of oil droplets in strong winds: the Braer oil spill. Mar. Pollut. Bull. 30 (11), 756758.
Tomita Y., Saito T. & Ganbara S. 2007 Surface breakup and air bubble formation by drop impact in the irregular entrainment region. J. Fluid Mech. 588, 131152.
Tran T., de Maleprade H., Sun C. & Lohse D. 2013 Air entrainment during impact of droplets on liquid surfaces. J. Fluid Mech. 726, R3.
Tsimplis M. & Thorpe S. A. 1989 Wave damping by rain. Nature 342, 893895.
Vassallo P. & Ashgriz N. 1991 Satellite formation and merging in liquid jet breakup. Proc. R. Soc. Lond. A 433, 269286.
Villermaux E. 2007 Fragmentation. Annu. Rev. Fluid Mech. 39, 419446.
Villermaux E. & Bossa B. 2009 Single-drop fragmentation determines size distribution of raindrops. Nat. Phys. 5, 697702.
Villermaux E. & Bossa B. 2011 Drop fragmentation on impact. J. Fluid Mech. 668, 412435.
Villermaux E., Marmottant Ph. & Duplat J. 2004 Ligament-mediated spray formation. Phys. Rev. Lett. 92, 074501.
Villermaux E., Pistre V. & Lhuissier H. 2013 The viscous Savart sheet. J. Fluid Mech. 730, 607625.
Wacheul J.-B., Le Bars M., Monteux J. & Aurnou J. 2014 Laboratory experiments on the breakup of liquid metal diapirs. Earth Planet. Sci. Lett. 403, 236245.
Wang A. & Chen C. 2000 Splashing impact of a single drop onto very thin liquid films. Phys. Fluids 12 (9), 21552158.
Weiss D. A. & Yarin A. L. 1999 Single drop impact onto liquid films: neck distortion, jetting, tiny bubble entrainment, and crown formation. J. Fluid Mech. 385, 229254.
Wong D. C. Y., Simmons M. J. H., Decent S. P., Parau E. I. & King A. C. 2004 Break-up dynamics and drop size distributions created from spiraling liquid jets. Intl J. Multiphase Flow 30, 499520.
Worthington A. M. 1876 On the forms assumed by drops of liquids falling vertically on a horizontal plate. Proc. R. Soc. Lond. 25, 261282.
Worthington A. M. 1882 On impact with a liquid surface. Proc. R. Soc. Lond. 25, 217230.
Worthington A. M. 1908 A Study of Splashes. Longmans Green.
Worthington A. M. & Cole R. S. 1896 Impact with a liquid surface studied by the aid of instantaneous photography. Proc. R. Soc. Lond. 25, 137148.
Xu L., Barcos L. & Nagel S. R. 2007 Splashing of liquids: interplay of surface roughness with surrounding gas. Phys. Rev. E 76, 066311.
Zhang D. F. & Stone H. A. 2007 Drop formation in viscous flows at a vertical capillary tube. Phys. Fluids 8, 22342242.
Zhang L. V., Brunet P., Eggers J. & Deegan R. D. 2010 Wavelength selection in the crown splash. Phys. Fluids 22, 122105.
Zhang L. V., Toole J., Fezzaa K. & Deegan R. D. 2011 Evolution of the ejecta sheet from the impact of a drop with a deep pool. J. Fluid Mech. 690, 515.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 24
Total number of PDF views: 179 *
Loading metrics...

Abstract views

Total abstract views: 463 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th December 2017. This data will be updated every 24 hours.