Skip to main content
×
Home
    • Aa
    • Aa

The onset of instability in unsteady boundary-layer separation

  • K. W. Cassel (a1), F. T. Smith (a2) and J. D. A. Walker (a1)
Abstract

The process of unsteady two-dimensional boundary-layer separation at high Reynolds number is considered. Solutions of the unsteady non-interactive boundary-layer equations are known to develop a generic separation singularity in regions where the pressure gradient is prescribed and adverse. As the boundary layer starts to separate from the surface, however, the external pressure distribution is altered through viscous—inviscid interaction just prior to the formation of the separation singularity; hitherto this has been referred to as the first interactive stage. A numerical solution of this stage is obtained here in Lagrangian coordinates. The solution is shown to exhibit a high-frequency inviscid instability resulting in an immediate finite-time breakdown of this stage. The presence of the instability is confirmed through a linear stability analysis. The implications for the theoretical description of unsteady boundary-layer separation are discussed, and it is suggested that the onset of interaction may occur much sooner than previously thought.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

Acarlar, M. S. & Smith, C. R. 1987a A study of hairpin vortices in a laminar boundary layer. Part 1. Hairpin vortices generated by hemisphere protuberances. J. Fluid Mech. 175, 141.

Acarlar, M. S. & Smith, C. R. 1987b A study of hairpin vortices in a laminar boundary layer. Part 2. Hairpin vortices generated by fluid injection. J. Fluid Mech. 175, 4383.

Bhaskaran, R., Smith, F. T. & Timoshin, S. N.1995The appearance of boundary-layer instabilities as a velocity minimum develops. Proc. R. Soc. Lond. A 451, 331339.

Bouard, R. & Coutanceau, M. 1980 The early stage of development of the wake behind an impulsively-started cylinder for 40 < Re < 104. J. Fluid Mech. 101, 583607.

Brown, S. N., Cheng, H. K. & Smith, F. T. 1988 Nonlinear instabilities and break-up of separated flow. J. Fluid Mech. 193, 191216.

Chuang, F. S. & Conlisk, A. T. 1989 Effect of interaction on the boundary layer induced by a convected rectilinear vortex. J. Fluid Mech. 200, 337365.

Cowley, S. J., Hocking, L. M. & Tutty, O. R.1985The stability of solutions of the classical unsteady boundary-layer equations. Phys. Fluids28, 441443.

Cowley, S. J., Dommelen, L. L. Van & Lam, S. T.1990On the use of Lagrangian variables in descriptions of unsteady boundary-layer separation. Phil. Trans. R. Soc. Lond. A 333, 343378.

Doligalski, T. L., Smith, C. R. & Walker, J. D. A.1994Vortex interactions with walls. Ann. Rev. Fluid Mech.26, 573616.

Doligalksi, T. L. & Walker, J. D. A. 1984 The boundary layer induced by a convected two-dimensional vortex. J. Fluid Mech. 139, 128.

Elliott, J. W., Cowley, S. J. & Smith, F. T.1983Breakdown of boundary layers: (i) on moving surfaces; (ii) in semi-similar unsteady flow; (iii) in fully unsteady flow. Geophys. Astrophys. Fluid Dyn.25, 77138.

Head, M. R. & Bandyopadhyay, P. 1981 New aspects of turbulent boundary-layer structure. J. Fluid Mech. 107, 297338.

Henkes, R. A. W. M. & Veldman, A. E. P. 1987 On the breakdown of the steady and unsteady interacting boundary-layer description. J. Fluid Mech. 179, 513529.

Hoyle, J. M., Smith, F. T. & Walker, J. D. A.1991On sublayer eruption and vortex formation. Comput. Phys. Commun.65, 151157.

Krasny, R. 1986 A study of singularity formation in a vortex sheet by the point-vortex approximation. J. Fluid Mech. 167, 6593.

McCroskey, W. J.1982Unsteady airfoils. Ann. Rev. Fluid Mech.14, 285311.

Peridier, V. J., Smith, F. T. & Walker, J. D. A. 1991a Vortex-induced boundary-layer separation. Part 1. The unsteady limit problem Re → ∞. J. Fluid Mech. 232, 99131.

Peridier, V. J., Smith, F. T. & Walker, J. D. A. 1991b Vortex-induced boundary-layer separation. Part 2. Unsteady interacting boundary-layer theory. J. Fluid Mech. 232, 133165.

Ryzhov, O. S. & Smith, F. T. 1984 Short-length instabilities, breakdown and initial value problems in dynamic stall. Mathematika 31, 163177.

Sears, W. R. & Telionis, D. P.1975Boundary-layer separation in unsteady flow. SIAM J. Appl. Maths28, 215235.

Shelley, M. J. 1992 A study of singularity formation in vortex-sheet motion by a spectrally accurate vortex method. J. Fluid Mech. 244, 493526.

Smith, C. R., Walker, J. D. A., Haidari, A. H. & Sobrun, U.1991On the dynamics of near-wall turbulence. Phil. Trans. R. Soc. Lond. A 336, 131175.

Smith, F. T.1982On the high Reynolds number theory of laminar flows. IMA J. Appl. Maths28, 207281.

Smith, F. T. 1988 Finite-time break-up can occur in any unsteady interacting boundary layer. Mathematika 35, 256273.

Smith, F. T. & Elliott, J. W.1985On the abrupt turbulent reattachment downstream of leadingedge laminar separation. Proc. Roy. Soc. Lond. A 401, 127.

Stewartson, K.1964The Theory of Laminar Boundary Layers in Compressible Fluids.Oxford University Press.

Tutty, O. R. & Cowley, S. J. 1986 On the stability and the numerical solution of the unsteady interactive boundary-layer separation. J. Fluid Mech. 168, 431456.

Dommelen, L. L. Van & Shen, S. F.1980The spontaneous generation of the singularity in a separating laminar boundary layer. J. Comput. Phys.38, 125140.

Walker, J. D. A.1978The boundary layer due to a rectilinear vortex. Proc. R. Soc. Lond. A 359, 167188.

Walker, J. D. A.1990Models based on the dynamical features of the wall layer. Appl. Mech. Rev.43, S232S239.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax