Skip to main content Accessibility help

Ejecta evolution during cone impact

  • J. O. Marston (a1) and S. T. Thoroddsen (a1) (a2)

We present findings from an experimental investigation into the impact of solid cone-shaped bodies onto liquid pools. Using a variety of cone angles and liquid physical properties, we show that the ejecta formed during the impact exhibits self-similarity for all impact speeds for very low surface tension liquids, whilst for high-surface tension liquids similarity is only achieved at high impact speeds. We find that the ejecta tip can detach from the cone and that this phenomenon can be attributed to the air entrainment phenomenon. We analyse of a range of cone angles, including some ogive cones, and impact speeds in terms of the spatiotemporal evolution of the ejecta tip. Using superhydrophobic cones, we also examine the entry of cones which entrain an air layer.

Corresponding author
Present address: Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409-3121, USA. Email address for correspondence:
Hide All
Baldwin, J. L.1971 Vertical water entry of cones NOLTR 71-25, available at
Burley, R. & Jolly, R. P. S. 1984 Entrainment of air into liquids by a high speed continuous solid surface. Chem. Engng Sci. 39, 13571372.
Burley, R. & Kennedy, S. B. 1976 An experimental study of air entrainment at a solid/liquid/gas interface. Chem. Engng Sci. 39, 13571372.
Clanet, C. & Villermaux, E. 2002 Life of a smooth liquid sheet. J. Fluid Mech. 462, 307340.
De Backer, G., Vantorre, M., Beels, C., De Pre, J., Victor, S., De Rouck, J., Blommaert, C. & Van Paepegem, W. 2009 Experimental investigation of water impact on axisymmetric bodies. Appl. Ocean Res. 31, 143156.
Duez, C., Ybert, C., Clanet, C. & Bocquet, L. 2007 Making a splash with water repellency. Nat. Phys. 3, 180183.
El Malki Alaoui, A., Neme, A., Tassin, A. & Jacques, N. 2012 Experimental study of coefficients during vertical water entry of axisymmetric rigid shapes at constant speeds. Appl. Ocean Res. 37, 183197.
Etoh, T. G., Poggemann, D., Kreider, G., Mutoh, H., Theuwissen, A. J. P., Ruckelshausen, A., Kondo, Y., Maruno, H., Takubo, K., Soya, H., Takehara, K., Okinaka, T. & Takano, Y. 2003 An image sensor which captures 100 consecutive frames at 1 000 000 f.p.s. IEEE Trans. Electron. Devices 50 (1), 144151.
Faltinsen, O. M. 1990 Sea Loads on Ships and Offshore Structures. Cambridge University Press.
Ghannam, M. T. & Esmail, M. N. 1993 Experimental study of the wetting of fibers. AIChE J. 39 (2), 361365.
Greenhow, M. 1987 Water entry into initially calm water. Appl. Ocean Res. 9, 214223.
Gutoff, E. B. & Kendrick, C. E. 1987 Low flow limitis of coatability on a slide coater. AIChE J. 33, 141145.
Howison, S. D., Ockendon, J. R. & Wilson, S. K. 1991 Incompressible water-entry problems at small deadrise angles. J. Fluid Mech. 222, 215230.
Hughes, O. F. 1972 Solution of the wedge entry problem by numerical conformal mapping. J. Fluid Mech. 56, 173192.
Iafrati, A. & Korobkin, A. A. 2004 Initial stage of flat plate impact onto liquid free surface. Phys. Fluids 16, 22142227.
Josserand, C. & Zaleski, S. 2003 Droplet splashing on a thin liquid film. Phys. Fluids 15, 16501657.
Judge, C., Troesch, A. & Perlin, M. 2004 Initial water impact of a wedge at vertical and oblique angles. J. Engng Maths 48, 279303.
Korobkin, A. A. & Pukhnachov, V. V. 1988 Initial stage of water impact. Annu. Rev. Fluid Mech. 20, 159185.
Lewis, S. G., Hudson, D. A., Turnock, S. R. & Taunton, D. J. 2010 Impact of a free-falling wedge with water: synchronised visualization, pressure and acceleration measurements. Fluid Dyn. Res. 42, 035509.
Mackie, A. G. 1969 The water entry problem. Q. J. Mech. Appl. Maths XXII (1), 117.
Marston, J. O., Li, E. Q. & Thoroddsen, S. T. 2012a Evolution of fluid-like granular ejecta generated by sphere impact. J. Fluid Mech. 704, 536.
Marston, J. O., Vakarelski, I. U. & Thoroddsen, S. T. 2012b Cavity formation by the impact of Leidenfrost spheres. J. Fluid Mech. 699, 465488.
Moore, M. R., Howison, S. D., Ockendon, J. R. & Oliver, J. M. 2012 Three-dimensional oblique water-entry problems at small deadrise angles. J. Fluid Mech. 711, 259280.
Moore, M. R., Howison, S. D., Ockendon, J. R. & Oliver, J. M. 2013 A note on oblique water entry. J. Engng Maths 81 (1), 6774.
Scolan, Y.-M. & Korobkin, A. A. 2001 Three-dimensional theory of water impact. Part 1. Inverse Wagner problem. J. Fluid Mech. 440, 293326.
Semenov, Y. A. & Yoon, B.-S. 2009 Onset of flow separation for the oblique water impact of a wedge. Phys. Fluids 21, 112103.
Shirtcliffe, N. J., McHale, G., Newton, M. I., Perry, C. C. & Pyatt, B. 2006 Plastron properties of a superhydrophobic surface. Appl. Phys. Lett. 89, 104106.
Sikalo, S., Marengo, M., Tropea, C. & Ganic, E. N. 2002 Analysis of impact of droplets on horizontal surfaces. Exp. Therm. Fluid Sci. 25, 503510.
Simpkins, P. G. & Kuck, V. J. 2003 On air entrainment in coatings. J. Colloid Interface Sci. 263, 562571.
Thoraval, M.-J., Takehara, K., Etoh, T. G., Popinet, S., Ray, P., Josserand, C., Zaleski, S. & Thoroddsen, S. T. 2012 von Kármán vortex street within an impacting drop. Phys. Rev. Lett. 108, 264506.
Thoroddsen, S. T. 2002 The ejecta sheet generated by the impact of a drop. J. Fluid Mech. 451, 373381.
Thoroddsen, S. T., Etoh, T. G., Takehara, K. & Takano, Y. 2004 Impact jetting by a solid sphere. J. Fluid Mech. 499, 139148.
Thoroddsen, S. T., Thoraval, M.-J., Takehara, K. & Etoh, T. G. 2011 Droplet splashing by a slingshot mechanism. Phys. Rev. Lett. 106, 034501.
Vakarelski, I. U., Patankar, N. A., Marston, J. O., Chan, D. Y. C. & Thoroddsen, S. T. 2012 Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 489, 274277.
Weiss, D. A. & Yarin, A. L. 1999 Single drop impact onto liquid films: neck distortion, jettin, tiny bubble entrapment, and crown formation. J. Fluid Mech. 385, 229254.
Xu, L., Zhang, W. W. & Nagel, S. R. 2005 Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94, 184505.
Yarin, A. L. & Weiss, D. A. 1995 Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J. Fluid Mech. 283, 141173.
Zhang, L. V., Toole, J., Fezzaa, K. & Deegan, R. D. 2011 Evolution of the ejecta sheet from the impact of a drop with a deep pool. J. Fluid Mech. 690, 512.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed