Skip to main content Accessibility help

Entrainment and topology of accelerating shear layers

  • Giuseppe A. Rosi (a1) and David E. Rival (a1)


A constantly accelerating circular plate was investigated towards understanding the effect of non-stationarity on shear-layer entrainment and topology. Dye visualizations and time-resolved particle image velocimetry measurements were collected for normalized accelerations spanning three orders of magnitude. Increasing acceleration acts to organize shear-layer topology. Specifically, the Kelvin–Helmholtz instabilities within the shear layer better adhered to a circular path and exhibited consistent and repeatable spacing. Normalized starting-vortex circulation was observed to collapse with increasing acceleration, which one might not expect due to increased levels of mixing at higher instantaneous Reynolds numbers. The entrainment rate was shown to increase nonlinearly with increasing acceleration. This was attributed to closer spacing between instabilities, which better facilitates the roll-up of fluid between the shear layer and vortex core. The shear-layer organization observed at higher accelerations was associated with smaller spacings between instabilities. Specifically, analogous point-vortex simulations demonstrated that decreasing the spacing between instabilities acts to localize and dampen perturbations within an accelerating shear layer.


Corresponding author

Email address for correspondence:


Hide All
Ashbee, T. L., Esler, J. G. & McDonald, N. R. 2013 Generalized hamiltonian point vortex dynamics on arbitrary domains using the method of fundamental solutions. J. Comput. Phys. 246, 289303.
Brown, G. L. & Roshko, A. 1974 On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64 (4), 775816.
Cantwell, B. & Coles, D. 1983 An experimental study of entrainment and transport in the turbulent near-wake of a circular cylinder. J. Fluid Mech. 136, 321374.
Caulfield, C. P., Yoshida, S. & Peltier, W. R. 1996 Secondary instability and three-dimensionalization in a laboratory accelerating shear layer with varying density differences. Dyn. Atmos. Oceans 23 (1), 125138.
Chauhan, K., Philip, J., de Silva, C. M., Hutchins, N. & Marusic, I. 2014 The turbulent/non-turbulent interface and entrainment in a boundary layer. J. Fluid Mech. 742, 119151.
Corrsin, S. & Kistler, A. L.1955 Free-stream boundaries of turbulent flows. NACA Tech. Rep.
Dabiri, J. O. & Gharib, M. 2004 Fluid entrainment in isolated vortex rings. J. Fluid Mech. 511, 311331.
Didden, N.1977 Untersuchung laminarer, instabiler Ringwirbel mittels Laser Doppler Anemometrie. Mitteilungen aus dem Max-Planck-Institut für Strömungsforschung. Dt. Forschungs- u. Versuchsanst. für Luft- u. Raumfahrt e.V., Forschungszentrum Aerodynam. Versuchsanst. Göttingen.
Dimotakis, P. E. & Brown, G. L. 1976 The mixing layer at high Reynolds number: large-structure dynamics and entrainment. J. Fluid Mech. 78, 535560.
Gharib, M., Rambod, E. & Shariff, K. 1998 A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121140.
Glezer, A. 1988 The formation of vortex rings. Phys. Fluids 31 (12), 35323542.
Hain, R. & Kaehler, C. J. 2007 Fundamentals of multiframe particle image velocimetry (PIV). Exp. Fluids 42 (4), 575587.
Ho, C. M. & Huerre, P. 1984 Perturbed free shear layers. Annu. Rev. Fluid Mech. 16 (1), 365422.
Krug, D., Holzner, M., Lüthi, B., Wolf, M., Kinzelbach, W. & Tsinober, A. 2013 Experimental study of entrainment and interface dynamics in a gravity current. Exp. Fluids 54 (1530), 113.
Liess, C. & Didden, N. 1976 Experimente zum einflu und der anfangsbedin-gungen auf die instabilitat von ringwirbeln. Z. Angew. Math. Mech. 56, 625639.
Mistry, D., Philip, J., Dawson, J. R. & Marusic, I. 2016 Entrainment at multi-scales across the turbulent/non-turbulent interface in an axisymmetric jet. J. Fluid Mech. 802, 690725.
Olcay, A. B. & Krueger, P. S. 2008 Measurement of ambient fluid entrainment during laminar vortex ring formation. Exp. Fluids 44 (2), 235247.
Olcay, A. B. & Krueger, P. S. 2010 Momentum evolution of ejected and entrained fluid during laminar vortex ring formation. Theor. Comput. Fluid Dyn. 24 (5), 465482.
Pawlak, G. & Armi, L. 1998 Vortex dynamics in a spatially accelerating shear layer. J. Fluid Mech. 376, 135.
Pawlak, G. & Armi, L. 2000 Mixing and entrainment in developing stratified currents. J. Fluid Mech. 424, 4573.
Phillip, J. & Marusic, I. 2012 Large-scale eddies and their roles in entrainment in turbulent jets and wakes. Phys. Fluids 48, 055108.
Ricou, F. P. & Spalding, D. B. 1961 Measurements of entrainment by axisymmetrical turbulent jets. J. Fluid Mech. 11, 2132.
Saffman, P. G. 1978 The number of waves on unstable vortex rings. J. Fluid Mech. 84 (04), 625639.
Schlatter, P., Li, Q., Brethouwer, G., Johansson, A. V. & Henningson, D. S. 2010 Simulations of spatially evolving turbulent boundary layers up to Re𝜃 = 4300. Intl J. Heat Fluid Flow 31 (3), 251261.
Shadden, S. C., Dabiri, J. O. & Marsden, J. E. 2006 Lagrangian analysis of fluid transport in empirical vortex ring flows. Phys. Fluids 18, 047105.
Shadden, S. C., Katija, K., Rosenfeld, M., Marsden, J. E. & Dabiri, J. O. 2007 Transport and stirring induced by vortex formation. J. Fluid Mech. 593, 315331.
da Silva, C. B., Dos Reis, R. J. N. & Pereira, J. C. F. 2011 The intense vorticity structures near the turbulent/non-turbulent interface in a jet. J. Fluid Mech. 685, 165190.
Wolf, M., Holzner, M., Krug, D., Lüthi, B., Kinzelbach, W. & Tsinober, A. 2013 Effects of mean shear on the local turbulent entrainment process. J. Fluid Mech. 731, 95116.
Xu, L. & Nitsche, M. 2015 Start-up vortex flow past an accelerated flat plate. Phys. Fluids 27 (3), 033602.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Entrainment and topology of accelerating shear layers

  • Giuseppe A. Rosi (a1) and David E. Rival (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.