Skip to main content Accessibility help
×
Home

Evolution of fluid-like granular ejecta generated by sphere impact

  • J. O. Marston (a1), E. Q. Li (a1) and S. T. Thoroddsen (a1)

Abstract

We present results from an experimental study of the speed and shape of the ejecta formed when a solid sphere impacts onto a granular bed. We use high-speed imaging at frame rates up to 100 000 f.p.s. to provide direct measurement of individual grain velocities and ejecta angles as well as the overall evolution of the granular ejecta. For larger grain sizes, the emergence velocities of the grains during the ‘early stage flow’, i.e. before the main ejecta ‘curtain’ forms, increase with the kinetic energy of the impacting sphere but are inversely proportional to the time from impact. We also observe that the fastest grains, which can obtain velocities up to five times that of the impacting sphere (), generally emerge at the earliest times and with the lowest ejection angles. As the grain size is decreased, a more ‘fluid-like’ behaviour is observed whereby the ejected material first emerges as a thin sheet of grains between the sphere and the bed surface, which is also seen when a sphere impacts a liquid pool. In this case, the sheet velocity is approximately double that of the impacting sphere () and independent of the bulk packing fraction. For the finest grains we provide evidence of the existence of a vortex ring inside the ejecta curtain where grains following the air flow are entrained through the curtain. In contrast to predictions from previous studies, we find that the temporal evolution of the ejecta neck radius is not initially quadratic but rather approaches a square-root dependence on time, for the finest grains with the highest impact kinetic energy. The evolution therefore approaches that seen for the crown evolution in liquid drop impacts. By using both spherical glass beads and coarse sands, we show that the size and shape distribution are critical in determining the post-impact dynamics whereby the sands exhibit a qualitatively different response to impact, with grains ejected at lower speeds and at later times than for the glass beads.

Copyright

Corresponding author

Email address for correspondence: jeremy.marston@kaust.edu.sa

References

Hide All
1. Ambroso, M. A., Santore, C. R., Abate, A. R. & Durian, D. J. 2005 Penetration depth for shallow impact cratering. Phys. Rev. E 71, 051305.
2. Barnouin-Jha, O. S. & Schultz, P. 1999 Interactions between an impact generated ejecta curtain and an atmosphere. J. Impact Engng 23, 5162.
3. Beladjine, D., Ammi, M., Oger, L & Alexandre, V. 2007 Collision process between an incident bead and a three-dimensional granular packing. Phys. Rev. E 75, 061305.
4. Boudet, J. F., Amarouchene, Y., Bonnier, B. & Kellay, H. 2007 The granular jump. J. Fluid Mech. 413, 413431.
5. Boudet, J. F., Amarouchene, Y. & Kellay, H. 2006 Dynamics of impact cratering in shallow sand layers. Phys. Rev. Lett. 96, 158001.
6. Caballero, G., Bergmann, R., van der Meer, D., Prosperetti, A. & Lohse, D. 2007 Role of air in granular jet formation. Phys. Rev. Lett. 99, 018001.
7. Cheng, X., Varas, G., Citron, D., Jaeger, H. M. & Nagel, S. R. 2007 Collective behaviour in a granular jet: emergence of a liquid with zero surface tension. Phys. Rev. Lett. 99, 188001.
8. Colwell, J. E., Sture, S., Cintala, M., Durda, D., Hendrix, A., Goudie, T., Curtis, D., Ashcom, D. J., Kanter, M., Keohane, T., Lemos, A., Lupton, M. & Route, M. 2008 Ejecta from impacts at 0.2–2.3 m s−1 in low gravity. Icarus 195, 908917.
9. Cossali, G. E., Marengo, M., Coghe, A. & Zhdanov, S. 2004 The role of time in single drop splash on thin film. Exp. Fluids 36, 888900.
10. Deboeuf, S., Gondret, P. & Rabaud, M. 2009 Dynamics of grain ejection by sphere impact on a granular bed. Phys. Rev. E 79, 041306.
11. Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71, 036601.
12. Forterre, Y. & Pouliquen, O. 2008 Flows of dense granular media. Annu. Rev. Fluid Mech. 40, 124.
13. Grace, J. R. 1970 The viscosity of fluidised beds. Can. J. Chem. Engng 48, 30.
14. Goldman, D. I. & Umbahnowar, P. 2008 Scaling and dynamics of sphere and disk impact into granular media. Phys. Rev. E. 77, 021308.
15. Hapgood, K. P., Lister, J. D., Biggs, S. R. & Howes, T. 2002 Drop penetration into porous powder beds. J. Colloid Interface Sci. 253, 353366.
16. Hartmann, W. K. 1985 Impact Experiments 1. Ejecta velocity distributions and related results from regolith targets. Icarus 63, 6998.
17. Hermalyn, B. & Schultz, P. H. 2010 Early-stage ejecta velocity distribution for vertical hypervelocity impacts into sand. Icarus 209, 866870.
18. Hermalyn, B. & Schultz, P. H. 2011 Time-resolved studies of hypervelocity impacts into porous particulate targets: effects of projectile density on early-time coupling and crater growth. Icarus 216, 269279.
19. Holsapple, K. A. 1993 The scaling of impact processes in planetary sciences. Annu. Rev. Earth Planet. Sci. 21, 333373.
20. Housen, K. R. & Holsapple, K. A. 2011 Ejecta from impact craters. Icarus 211, 856875.
21. Jop, P., Forterre, Y. & Pouliquen, O. 2006 A constitutive law for dense granular flows. Nature 441, 727730.
22. von Kann, S., Joubaud, S., Caballero-Robledo, G. A., Lohse, D. & van der Meer, D. 2010 Effect of finite container size on granular jet formation. Phys. Rev. E 81, 041306.
23. King, D. F., Mitchell, F. R. G. & Harrison, D. 1981 Dense phase viscosities of fluidised beds at elevated pressures. Powder Technol. 28, 5558.
24. Lacaze, L. & Kerswell, R. 2009 Axisymmetric granular collapse: a transient 3D test of viscoplasticity. Phys. Rev. Lett. 102, 108305.
25. Lohse, D., Bergmann, R., Mikkelsen, R., Zeilstra, C., van der Meer, D., Versluis, M., van der Weele, K., van der Hoef, M. & Kuipers, H. 2004 Impact on soft sand: void collapse and jet formation. Phys. Rev. Lett. 93 (19), 198003.
26. Lun, C. K., Savage, S. B., Jeffrey, D. J. & Chepurniy, N 1984 Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flow field. J. Fluid Mech. 140, 223.
27. Marston, J. O., Seville, J. P. K., Cheun, Y.-V., Ingram, A., Decent, S. P. & Simmons, M. J. H. 2008 Effect of packing fraction on granular jetting from solid sphere entry into aerated and fluidised beds. Phys. Fluids 20, 023301.
28. Michikami, T., Moriguchi, K., Hasegawa, S. & Fujiwara, A. 2007 Ejecta velocity distribution for impact cratering experiments on porous and low strength targets. Planet. Space Sci. 55, 7088.
29. Mobius, M. E. 2006 Clustering instability in a freely falling granular jet. Phys. Rev. E 74, 051304.
30. O’keefe, J. D. & Ahrens, T. J. 1985 Impact and explosion crater ejecta, fragmentation size, and velocity. Icarus 62, 328338.
31. Royer, J. R., Corwin, E. I., Conyers, B., Flior, A., Rivers, M. L., Eng, P. J. & Jaeger, H. M. 2008 Birth and growth of a granular jet. Phys. Rev. E 78, 011305.
32. Royer, J. R., Corwin, E. I., Eng, P. J. & Jaeger, H. M. 2007 Gas-mediated impact dynamics in fine-grained granular materials. Phys. Rev. Lett. 99, 038003.
33. Royer, J. R., Evans, D. J., Oyarte, L., Guo, Q., Kapit, E., Mobius, M. E., Waitukaitis, S. R. & Jaeger, H. M. 2009 High-speed tracking of rupture and clustering in freely falling granular streams. Nature 459, 11101113.
34. Savage, S. B. 1989 Flow of granular materials. In Theoretical and Applied Mechanics, pp. 241266. Elsevier.
35. Savage, S. B. & Sayed, M. 1984 Stresses developed by dry cohesionless granular materials sheared in an annular shear cell. J. Fluid Mech. 142, 391430.
36. Seguin, A., Bertho, Y. & Gondret, P. 2008 Influence of confinement on granular penetration by impact. Phys. Rev. E 78, 010301.
37. Stephensen, R. 2000 Shallow foundations. In Practical Foundation Engineering Handbook, 2nd edn (ed. Brown, R. ), pp. 135164. McGraw-Hill Publishing.
38. Stickel, J. J. & Powell, R. L. 2005 Fluid mechanics and rheology of dense suspensions. Annu. Rev. Fluid Mech. 37, 129149.
39. Thoroddsen, S. T., Etoh, T. G., Takehara, K. & Takano, Y. 2004 Impact jetting by a solid sphere. J. Fluid Mech. 499, 139148.
40. Thoroddsen, S. T. & Shen, A. Q. 2001 Granular jets. Phys. Fluids 13 (1), 46.
41. Thoroddsen, S. T., Thoraval, M.-J., Takehara, K. & Etoh, T. G. 2011 Droplet splashing by a slingshot mechanism. Phys. Rev. Lett. 106, 034501.
42. Uehara, J. S., Ambroso, M. A., Ojha, R. P. & Durian, D. J. 2003 Low-speed impact crater in loose granular media. Phys. Rev. Lett. 90, 194301.
43. Umbanhowar, P. & Goldman, D. I. 2010 Granular impact and the critical packing state. Phys. Rev. E 82, 010301.
44. de Vet, S. J. & de Bruyn, J. R. 2007 Shape of impact craters in granular media. Phys. Rev. E. 76, 041306.
45. Walsh, A. M., Holloway, K. E., Habdas, P. & de Bruyn, J. R. 2003 Morphology and scaling of impact craters in granular media. Phys. Rev. Lett. 91 (10), 104301.
46. Weiss, D. A. & Yarin, A. L. 1999 Single drop impact onto liquid films: neck distortion, jetting, tiny bubble entrapment, and crown formation. J. Fluid Mech. 385, 229254.
47. Yamamoto, S., Kadono, T., Sugita, S. & Matsui, T. 2005 Velocity distributions of high-velocity ejecta from regolith targets. Icarus 178, 264273.
48. Yamamoto, S., Wada, K., Okabe, N. & Matsui, T. 2006 Transient crater growth in granular targets: an experimental study of low velocity impacts into glass sphere targets. Icarus 183, 215224.
49. Zeilstra, C. 2007Granular dynamics in vibrated beds. PhD thesis, University of Twente.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
VIDEO
Movies

Marston et al. supplementary movie
Movie 1. Sequences from video clips taken at 12,000 fps. Four different media are shown in this clip. The first 3 are glass beads with diameters 520, 178 and 31 μm and the final panel is water. In each sequence, the impacting sphere has a diameter of 25 mm and velocity of 9.8m/s prior to impact.

 Video (1.3 MB)
1.3 MB
VIDEO
Movies

Marston et al. supplementary movie
Movie 2. Video clip taken at 100,000 fps showing the emergence of a fluid-like granular sheet for fine grains. The sphere diameter is 50 mm, the impact velocity is 2.6 m/s and the grains are 31 μm.

 Video (92 KB)
92 KB
VIDEO
Movies

Marston et al. supplementary movie
Movie 3. Video clip taken at 1000,000 fps showing the high-speed ejecta generated during the impact of a 50 mm sphere onto a pool of water. The impact velocity was 9.45 m/s.

 Video (384 KB)
384 KB
VIDEO
Movies

Marston et al. supplementary movie
Movie 4. Video clip taken at 12,000 fps showing the collapse of the granular ejecta for the fine grains (31 μm). The sphere diameter is 25 mm and the impact velocity is 9.6 m/s.

 Video (23.8 MB)
23.8 MB
VIDEO
Movies

Marston et al. supplementary movie
Movie 5. Video clip taken at 12,000 fps showing fine grains (31 μm) flowing back through the porous ejecta, followed by the emergence of the granular jet. The sphere diameter is 25 mm and the impact velocity is 9.6 m/s.

 Video (11.0 MB)
11.0 MB

Evolution of fluid-like granular ejecta generated by sphere impact

  • J. O. Marston (a1), E. Q. Li (a1) and S. T. Thoroddsen (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed