Skip to main content

Experimental investigation of the scaling of vortex wandering in turbulent surroundings

  • Sean C. C. Bailey (a1), Steffen Pentelow (a2), Hari C. Ghimire (a1), Bahareh Estejab (a1), Melissa A. Green (a3) and Stavros Tavoularis (a2)...

The wandering of a wing-tip vortex in free-stream turbulence was documented by analysis of multi-probe hot-wire measurements in a wind tunnel and flow visualisation and particle image velocimetry measurements in a water tunnel. An error-minimisation approach was applied to the hot-wire measurements to estimate the time history of the location of the vortex axis, whereas flow visualisation from two orthogonal views permitted the reconstruction of relatively long sections of the vortex axis. The amplitude of the wandering motion was found to scale with the turbulence intensity, the core radius and the vortex turnover time; this amplitude was insensitive to changes in the integral length and time scales of the turbulence. The period of the vortex wandering was distributed in the range between 1 and 10 vortex turnover times. The wavelength of wandering was distributed at a relatively long value, which scaled with the vortex turnover time. The velocity of vortex wandering depended on the vortex turnover time, but also contained an additional contribution that was consistent with motion induced by bending waves. The prevalence of the vortex turnover time as the scale for vortex wandering was interpreted as evidence that vortex-induced straining of the free-stream eddies bounds the interaction time between the two, thus limiting the time available for linear and angular momentum transfer.

Corresponding author
Email address for correspondence:
Hide All

Present Address: Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.

Hide All
Alekseenko, S. V., Kuibin, P. A. & Okulov, V. L. 2007 Theory of Concentrated Vortices. Springer.
Antkowiak, A. & Brancher, P. 2004 Transient energy growth for the Lamb–Oseen vortex. Phys. Fluids 16 (1), L1L4.
Bailey, S. C. C.2007 The interaction of a wing-tip vortex and free-stream turbulence. PhD dissertation, University of Ottawa, Ottawa, Canada.
Bailey, S. C. C. & Tavoularis, S. 2008 Measurements of velocity field of a wing-tip vortex, wandering in grid turbulence. J. Fluid Mech. 601, 281315.
Bailey, S. C. C., Tavoularis, S. & Lee, B. H. K. 2006 Effects of free-stream turbulence on wing-tip vortex formation and near field. J. Aircraft 43 (5), 12821291.
Baker, G. R., Barker, S. J., Bofah, K. K. & Saffman, P. G. 1974 Laser anemometer measurements of trailing vortices in water. J. Fluid Mech. 65 (2), 325336.
Beninati, M. L. & Marshall, J. S. 2005 An experimental study of the effect of free-stream turbulence on a trailing vortex. Exp. Fluids 38 (2), 244257.
Beresh, S. J., Henfling, J. F. & Spillers, R. W. 2010 Meander of a fin trailing vortex and the origin of its turbulence. Exp. Fluids 49 (2), 599611.
Birch, D. M. 2012 Self-similarity of trailing vortex. Phys. Fluids 24 (2), 025105.
Boudet, J., Cahuzac, A., Kausche, P. & Jacob, M. C. 2015 Zonal large-eddy simulation of a fan tip-clearance flow, with evidence of vortex wandering. Trans. ASME J. Turbomach. 137 (6), 061001.
Comte-Bellot, G. & Corrsin, S. 1966 The use of a contraction to improve the isotropy of grid-generated turbulence. J. Fluid Mech. 25 (4), 657682.
Crow, S. C. & Bate, E. R. Jr. 1976 Lifespan of trailing vortices in a turbulent atmosphere. J. Aircraft 13, 476482.
Devenport, W. J., Rife, M. C., Liapis, S. I. & Follin, G. J. 1996 The structure and development of a wing-tip vortex. J. Fluid Mech. 312, 67106.
Devenport, W. J., Zsolodos, J. S. & Vogel, C. M. 1997 The structure and development of a counter-rotating wing-tip vortex pair. J. Fluid Mech. 332, 71104.
Dunn, W.2004 Vortex shedding from cylinders with step-changes in diameter in uniform and shear flows. PhD dissertation, University of Ottawa, Ottawa, Canada.
Edstrand, A. M., Davis, T. B., Schmid, P. J., Taira, K. & Cattafesta, L. N. 2016 On the mechanism of trailing vortex wandering. J. Fluid Mech. 801, R1.
Fabre, D. & Jacquin, L. 2004 Viscous instabilities in trailing vortices at large swirl numbers. J. Fluid Mech. 500, 239262.
Fabre, D., Sipp, D. & Jacquin, L. 2006 Kelvin waves and the singular modes of the Lamb–Oseen vortex. J. Fluid Mech. 551, 235274.
Fontane, J., Brancher, P. & Fabre, D. 2008 Stochastic forcing of the Lamb–Oseen vortex. J. Fluid Mech. 613, 233254.
Giuni, M. & Green, R. B. 2013 Vortex formation on squared and rounded tip. Aerosp. Sci. Technol. 29, 191199.
Gursul, I. & Xie, W. 2000 Origin of vortex wandering over delta wings. J. Aircraft 37, 348350.
Heaton, C. J. & Peake, N. 2007 Transient growth in vortices with axial flow. J. Fluid Mech. 587, 271301.
Heyes, A. L., Jones, R. F. & Smith, D. A. R. 2004 Wandering of wing-tip vortices. In Proceedings of the 12th International Symposium on Applications of Laser Techniques to Fluid Mechanics.
Holzäpfel, F., Hofbauer, T., Darracq, D., Moet, H., Garnier, F. & Gago, C. F. 2003 Analysis of wake vortex decay mechanisms in the atmosphere. Aerosp. Sci. Technol. 7, 263275.
Hussain, F., Pradeep, D. S. & Stout, E. 2011 Nonlinear transient growth in a vortex column. J. Fluid Mech. 682, 304331.
Igarashi, H., Durbin, P. A., Hu, H., Waltermire, S. & Wehrmeyer, J. 2011 The effects of wind tunnel walls on the near-field behavior of a wingtip vortex. In 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, American Institute of Aeronautics and Astronautics.
van Jaarsveld, J. P. J., Holten, A. P. C., Elsenaar, A., Trieling, R. R. & van Heijst, G. J. F. 2011 An experimental study of the effect of external turbulence on the decay of a single vortex and a vortex pair. J. Fluid Mech. 670, 214239.
Jacquin, L., Fabre, D., Geffroy, P. & Coustols, E. 2001 The properties of a transport aircraft wake in the extended near field: an experimental study. In 39th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, vol. 1038, pp. 141. American Institute of Aeronautics and Astronautics.
Jammy, S. P., Hills, N. & Birch, D. M. 2014 Boundary conditions and vortex wandering. J. Fluid Mech. 747, 350368.
Kelvin, Lord 1880 Vibrations of a columnar vortex. Phil. Mag. 10, 155168.
Marshall, J. S. & Beninati, M. L. 2005 External turbulence interaction with a columnar vortex. J. Fluid Mech. 540, 221245.
Melander, M. & Hussain, F. 1993 Coupling between a coherent structure and fine scale turbulence. Phys. Rev. E 48, 26692689.
Mula, S. M., Stephenson, J. H., Tinney, C. E. & Sirohi, J. 2013 Dynamical characteristics of the tip vortex from a four-bladed rotor in hover. Exp. Fluids 54 (10), 114.
Pentelow, S.2014 Wing-tip vortex structure and wandering. Master’s thesis, University of Ottawa, Ottawa, Canada.
del Pino, C., López-Alonso, J. M., Parras, L. & Fernandez-Feria, R. 2011 Dynamics of the wing tip vortex in the near field of a NACA 0012 aerofoil. Aeronaut. J. 115, 229239.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Pradeep, D. S. & Hussain, F. 2006 Transient growth of perturbations in a vortex column. J. Fluid Mech. 550, 251288.
Rokhsaz, K., Foster, S. R. & Miller, S. 2000 Exploratory study of aircraft wake vortex filaments in a water tunnel. J. Aircraft 37 (6), 10221027.
Saffman, P. 1995 Vortex Dynamics. Cambridge University Press.
Stout, E. & Hussain, F. 2016 External turbulence-induced axial flow and instability in a vortex. J. Fluid Mech. 793, 353379.
Takahashi, N., Ishii, H. & Miyazaki, T. 2005 The influence of turbulence on a columnar vortex. Phys. Fluids 17, 035105.
Tavoularis, S. 2005 Measurement in Fluid Mechanics. Cambridge University Press.
Taylor, G. I. 1921 Diffusion by continuous movements. Proc. Lond. Math. Soc. 20, 196211.
Widnall, S. E. 1975 The structure and dynamics of vortex filaments. Annu. Rev. Fluid Mech. 7, 141165.
Wittmer, K. S., Devenport, W. J. & Zsoldos, J. S. 1998 A four-sensor hot-wire probe system for three-component velocity measurement. Exp. Fluids 24, 416423.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 9
Total number of PDF views: 144 *
Loading metrics...

Abstract views

Total abstract views: 302 *
Loading metrics...

* Views captured on Cambridge Core between 23rd March 2018 - 20th July 2018. This data will be updated every 24 hours.