Skip to main content Accessibility help
×
Home

Faraday instability of a liquid layer on a lubrication film

  • Sicheng Zhao (a1), Mathias Dietzel (a1) and Steffen Hardt (a1)

Abstract

The Faraday instability in a system of two conjugated immiscible liquid layers with disparate thicknesses is investigated. The top layer is relatively thick and undergoes short-wavelength instabilities, while the bottom layer is thin and undergoes long-wavelength instabilities. The two layers are coupled by the kinematic and dynamic relations at the interface. Through linear stability analysis, a lubrication effect, which significantly reduces the destabilization threshold, is identified. Especially when the vibration frequency is low, the lubrication effect is seen to influence the transition between the harmonic and subharmonic instability modes. It is studied how far the system with two layers can be approximated by a single-layer system with a Navier-slip boundary condition at the bottom. In corresponding experiments it is found that the time-periodic excitation of the system creates a steady-state deformation of the bottom layer. This indicates nonlinear dynamics of the system and the violation of reversibility. The excellent agreement between experimental and theoretical results for the onset of the instability underpins the validity of the linear stability analysis.

Copyright

Corresponding author

Email address for correspondence: hardt@nmf.tu-darmstadt.de

References

Hide All
Benjamin, T. B. & Ursell, F. 1954 The stability of a plane free surface of a liquid in vertical periodic motion. Proc. R. Soc. Lond. A 225, 505515.
Bestehorn, M. 2013 Laterally extended thin liquid films with inertia under external vibrations. Phys. Fluids 25, 114106.
Bestehorn, M. & Pototsky, A. 2016 Faraday instability and nonlinear pattern formation of a two-layer system: A reduced model. Phys. Rev. Fluids 1, 063905.
Beyer, J. & Friedrich, R. 1995 Faraday instability: linear analysis for viscous liquids. Phys. Rev. E 51 (2), 16621668.
Binks, D. & Water, W. 1997 Nonlinear pattern formation of Faraday waves. Phys. Rev. Lett. 78 (21), 40434046.
Douady, S. 1990 Experimental study of the Faraday instability. J. Fluid Mech. 221, 383409.
Douady, S. & Fauve, S. 1988 Pattern selection in Faraday instability. Eur. Phys. Lett. 6 (3), 221226.
Edwards, W. S. & Fauve, S. 1993 Parametrically excited quasicrystalline surface waves. Phys. Rev. E 47 (2), R788R791.
Edwards, W. S. & Fauve, S. 1994 Patterns and quasi-patterns in the Faraday experiment. J. Fluid Mech. 278, 123148.
Eifert, A., Paulssen, D., Varanakkottu, S. N., Baier, T. & Hardt, S. 2014 Simple fabrication of robust water-repellent surfaces with low contact-angle hysteresis based on impregnation. Adv. Mater. Interfaces 1, 1300138.
Faraday, M. 1831 On a peculiar class of acoustical figures; and on certain forms assumed by a group of particles upon vibrating elastic surfaces. Phil. Trans. R. Soc. Lond. A 52, 299340.
Feng, J., Jacobi, I. & Stone, H. 2016 Experimental investigation of the Faraday instability on a patterned surface. Exp. Fluid 86, 57.
Floquet, G. 1883 Sur les équations différentielles linéaires á coefficients périodiques. Ann. Sci. École Norm. Sup. 12, 4788.
Gluckman, B. J., Marcq, P., Bridger, J. & Gollub, J. P. 1993 Time averaging of chaotic spatiotemporal wave patterns. Phys. Rev. Lett. 71 (13), 2034.
Hoffmann, F. M. & Wolf, G. H. 1974 Excitation of parametric instabilities in statically stable and unstable fluid instefaces. J. Appl. Phys. 45, 3859.
Kalliadasis, S., Ruyer, C., Scheid, B. & Velarde, M. G. 2012 Falling Liquid Films. Springer.
Kumar, K. 1996 Linear theory of Faraday instability in viscous liquids. Proc. R. Soc. Lond. A 452, 11131126.
Kumar, K. & Tuckerman, L. 1994 Parametric instability of the interface between two fluids. J. Fluid Mech. 279, 4968.
Kumar, S. 2000 Mechanism for the Faraday instability in viscous liquids. Phys. Rev. E 62 (1), 14161419.
Lafuma, A. & Quéré, D. 2011 Slippery pre-suffused surfaces. Eur. Phys. Lett. 96, 56001.
Nejati, I., Dietzel, M. & Hardt, S. 2015 Conjugated liquid layers driven by the short-wavelength Bénard–Marangoni instability: experiment and numerical simulation. J. Fluid Mech. 783, 4671.
Périnet, N., Gutiérrez, P., Urra, H., Mujica, N. & Cordillo, L. 2017 Streaming patterns in Faraday waves. J. Fluid Mech. 819, 285.
Piriz, A. R., Cortázar, O. D., López Cela, J. J. & Tahir, N. A. 2006 The Rayleigh–Taylor instability. Am. J. Phys. 74 (12), 1095.
Pototsky, A. & Bestehorn, M. 2016 Faraday instability of a two-layer liquid film with a free upper surface. Phys. Rev. Fluids 1, 023901.
Pototsky, A., Bestehorn, M., Merkt, D. & Thiele, U. 2005 Morphology changes in the evolution of liquid two-layer films. J. Chem. Phys. 122, 224711.
Rajchenbach, J. & Clamond, D. 2015 Faraday waves: their dispersion relation, nature of bifurcation and wavenumber selection revisited. J. Fluid Mech. 777, R2.
Rayleigh, L. 1883 On the crispations of fluid resting upon a vibrating support. Phil. Mag. 16 (5), 5058.
Rojas, N. O., Argentina, M., Cerba, E. & Tirapegui, E. 2011 Faraday patterns in lubricated thin films. Eur. Phys. J. D 62, 2531.
Schulze, T. P. 1999 A note on subharmonic instabilities. Phys. Fluids 11 (12), 35733576.
Shu, J., Teo, J. B. M. & Chan, W. K. 2017 Fluid velocity slip and temperature jump at a solid surface. Appl. Mech. Rev. 69 (2), 020801.
Sterman-Cohen, E., Bestehorn, M. & Oron, A. 2017 Rayleigh–Taylor instability in thin liquid films subjected to harmonic vibration. Phys. Fluids 29, 052105.
Thiele, U., Vegal, J. M. & Knobloch, E. 2006 Long-wave Marangoni instability with vibration. J. Fluid Mech. 546, 6187.
Troyon, F. & Gruber, R. 1971 Theory of the dynamic stabilization of the Rayleigh–Taylor instability. Phys. Fluids 14, 2069.
Westra, M., Binks, D. & Water, W. 2003 Patterns of Faraday waves. J. Fluid Mech. 496, 132.
Wong, T., Kang, S.H., Tang, S.K.Y., Smythe, E.J., Hatton, B.D., Grinthal, A. & Aizenberg, J. 2011 Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature Lett. 477, 443.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Faraday instability of a liquid layer on a lubrication film

  • Sicheng Zhao (a1), Mathias Dietzel (a1) and Steffen Hardt (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed