Skip to main content Accesibility Help

Film spreading from a miscible drop on a deep liquid layer

  • Raj Dandekar (a1), Anurag Pant (a2) and Baburaj A. Puthenveettil (a2)

We study the spreading of a film from ethanol–water droplets of radii $0.9~\text{mm} on the surface of a deep water layer for various concentrations of ethanol in the drop. Since the drop is lighter ( $\unicode[STIX]{x1D709}=\unicode[STIX]{x1D70C}_{l}/\unicode[STIX]{x1D70C}_{d}>1.03$ ), it stays at the surface of the water layer during the spreading of the film from the drop; the film is more viscous than the underlying water layer since $\unicode[STIX]{x1D712}=\unicode[STIX]{x1D707}_{l}/\unicode[STIX]{x1D707}_{d}>0.38$ . Inertial forces are not dominant in the spreading since the Reynolds numbers based on the film thickness $h_{f}$ are in the range $0.02 . The spreading is surface-tension-driven since the film capillary numbers are in the range $0.0005 and the drop Bond numbers are in the range $0.19 . We observe that, when the drop is brought in contact with the water surface, capillary waves propagate from the point of contact, followed by a radially expanding, thin circular film of ethanol–water mixture. The film develops instabilities at some radius to form outward-moving fingers at its periphery while it is still expanding, till the expansion stops at a larger radius. The film then retracts, during which time the remaining major part of the drop, which stays at the centre of the expanding film, thins and develops holes and eventually mixes completely with water. The radius of the expanding front of the film scales as $r_{f}\sim t^{1/4}$ and shows a dependence on the concentration of ethanol in the drop as well as on $r_{d}$ , and is independent of the layer height $h_{l}$ . Using a balance of surface tension and viscous forces within the film, along with a model for the fraction of the drop that forms the thin film, we obtain an expression for the dimensionless film radius $r_{f}^{\ast }=r_{f}/r_{d}$ , in the form $fr_{f}^{\ast }={t_{\unicode[STIX]{x1D707}d}^{\ast }}^{1/4}$ , where $t_{\unicode[STIX]{x1D707}d}^{\ast }=t/t_{\unicode[STIX]{x1D707}d}$ , with the time scale $t_{\unicode[STIX]{x1D707}d}=\unicode[STIX]{x1D707}_{d}r_{d}/\unicode[STIX]{x0394}\unicode[STIX]{x1D70E}$ and $f$ is a function of $Bo_{d}$ . Similarly, we show that the dimensionless velocity of film spreading, $Ca_{d}=u_{f}\unicode[STIX]{x1D707}_{d}/\unicode[STIX]{x0394}\unicode[STIX]{x1D70E}$ , scales as $4f^{4}Ca_{d}={r_{f}^{\ast }}^{-3}$ .

Corresponding author
Email address for correspondence:
Hide All
Afsar-Siddiqui, A., Luckham, P. F. & Matar, O. M. 2003 Unstable spreading of aqueous anionic surfactant solutions on liquid films. 2. Highly soluble surfactant. Langmuir 19, 703708.
Bacri, L., Debregeas, G. & Brochard-Wyart, F. 1996 Experimental study of the spreading of a viscous droplet on a non viscous liquid. Langmuir 12, 67086711.
Blanchette, F., Messio, L. & Bush, J. W. M. 2009 The influence of surface tension gradients on drop coalescence. Phys. Fluids 21 (7), 072107.
Chen, X., Mandre, S. & Feng, J. J. 2006 Partial coalescence between a drop and a liquid–liquid interface. Phys. Fluids 18 (5), 051705.
Clanet, C. & Lasheras, J. C. 1999 Transition from dripping to jetting. J. Fluid Mech. 383, 307326.
Dong, L. & Johnson, D. 2003 Surface tension of charge-stabilized colloidal suspensions at the water–air interface. Langmuir 19 (24), 1020510209.
Dussaud, A. D., Matar, O. K. & Troian, S. M. 2005 Spreading characteristics of an insoluble surfactant film on a thin liquid layer: comparison between theory and experiment. J. Fluid Mech. 544, 2351.
Dussaud, A. D. & Troian, S. M. 1998 Dynamics of spontaneous spreading with evaporation on a deep fluid layer. Phys. Fluids 10 (1), 2338.
Eggers, J., Lister, J. R. & Stone, H. A. 1999 Coalescence of liquid drops. J. Fluid Mech. 401, 293310.
Ernst, R. C., Watkins, C. H. & Ruwe, H. H. 1936 The physical properties of the ternary system ethyl–alcohol–glycerin–water. J. Phys. Chem. 40 (5), 627635.
Fay, J. A. 1969 The spread of oil slicks on a calm sea. In Oil on the Sea, pp. 5363. Springer.
Foda, M. & Cox, R. G. 1980 The spreading of thin liquid films on a water–air interface. J. Fluid Mech. 101 (1), 3351.
Fraaije, J. G. E. M. & Cazabat, A. M. 1989 Dynamics of spreading on a liquid substrate. J. Colloid Interface Sci. 133 (2), 452460.
Grotberg, J. B. 1994 Pulmonary flow and transport phenomena. Annu. Rev. Fluid Mech. 26 (1), 529571.
Grotberg, J. B. & Gaver, D. P. III 1996 A synopsis of surfactant spreading research. J. Colloid Interface Sci. 178 (1), 377378.
Halpern, D. & Grotberg, J. B. 1992 Dynamics of transport of a localised soluble surfactant on a thin film. J. Fluid Mech. 237, 111.
Hernández-Sánchez, J. F., Eddi, A. & Snoeijer, J. H. 2015 Marangoni spreading due to a localized alcohol supply on a thin water film. Phys. Fluids 27 (3), 032003.
Jensen, O. E. 1995 The spreading of insoluble surfactant at the free surface of a deep fluid layer. J. Fluid Mech. 293, 349378.
Jensen, O. E. & Grotberg, J. B. 1992 Insoluble surfactant spreading on a thin viscous film: shock evolution and film rupture. J. Fluid Mech. 240, 259288.
Jensen, O. E. & Grotberg, J. B. 1993 The spreading of heat or soluble surfactant along a thin liquid film. Phys. Fluids A 5 (1), 5868.
Jensen, O. E. & Halpern, D. 1998 The stress singularity in surfactant-driven thin-film flows. Part 1. Viscous effects. J. Fluid Mech. 372, 273300.
Joos, P. & Pintens, J. 1977 Spreading kinetics of liquids on liquids. J. Colloid Interfacial Sci. 60, 507513.
Joos, P. & Van Hunsel, J. 1985 Spreading of aqueous surfactant solutions on organic liquids. J. Colloid Interfacial Sci. 106 (1), 161167.
Khattab, I. S., Bandarkar, F., Fakhree, M. A. & Jouban, A. 2012 Density, viscosity and surface tension of water–ethanol mixtures from 293 to 323 K. Korean J. Chem. Engng 29 (6), 812817.
La Due, J., Muller, M. R. & Swangler, M. J. 1996 Cratering phenomena on aircraft anti-icing films. J. Aircraft 33, 131138.
Landt, E. & Volmer, M. 1926 Spreading velocity of oil on H2 O. Z. Phys. Chem. 122, 398.
Le, H. P. 1998 Progress and trends in ink-jet printing technology. J. Imaging Sci. Technol. 42 (1), 42.
Lock, G. S. H. 1996 Latent Heat Transfer: An Introduction to Fundamentals, No. 43, pp. 124126. Oxford University Press.
Warner, M. R. E., Craster, R. V. & Matar, O. K. 2004 Fingering phenomena created by a soluble surfactant deposition on a thin liquid film. Phys. Fluids 16 (8), 29332951.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed