Skip to main content
×
Home
    • Aa
    • Aa

Finite-amplitude bifurcations in plane Poiseuille flow: two-dimensional Hopf bifurcation

  • Israel Soibelman (a1) and Daniel I. Meiron (a1)
Abstract

We examine the stability to superharmonic disturbances of finite-amplitude two-dimensional travelling waves of permanent form in plane Poiseuille flow. The stability characteristics of these flows depend on whether the flux or pressure gradient are held constant. For both conditions we find several Hopf bifurcations on the upper branch of the solution surface of these two-dimensional waves. We calculate the periodic orbits which emanate from these bifurcations and find that there exist no solutions of this type at Reynolds numbers lower than the critical value for existence of two-dimensional waves (≈2900). We confirm the results of Jiménez (1987) who first detected a stable branch of these solutions by integrating the two-dimensional equations of motion numerically.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 9 *
Loading metrics...

Abstract views

Total abstract views: 82 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 28th May 2017. This data will be updated every 24 hours.