Skip to main content
    • Aa
    • Aa

Flow physics and RANS modelling of oblique shock/turbulent boundary layer interaction

  • Brandon Morgan (a1), K. Duraisamy (a1), N. Nguyen (a1), S. Kawai (a1) and S. K. Lele (a1)...

Large-eddy simulation (LES) is utilized to investigate flow physics and lower-fidelity modelling assumptions in the simulation of an oblique shock impinging on a supersonic turbulent boundary layer (OSTBLI). A database of LES solutions is presented, covering a range of shock strengths and Reynolds numbers, that is utilized as a surrogate-truth model to explore three topics. First, detailed conservation budgets are extracted within the framework of parametric investigation to identify trends that might be used to mitigate statistical (aleatory) uncertainties in inflow conditions. It is found, for instance, that an increase in Reynolds number does not significantly affect length of separation. Additionally, it is found that variation in the shock-generating wedge angle has the effect of increasing the intensity of low-frequency oscillations and moving these motions towards longer time scales, even when scaled by interaction length. Next, utilizing the LES database, a detailed analysis is performed of several existing models describing the low-frequency unsteady motion of the OSTBLI system. Most significantly, it is observed that the length scale of streamwise coherent structures appears to be dependent on Reynolds number, and at the Reynolds number of the present simulations, these structures do not exist on time scales long enough to be the primary cause of low-frequency unsteadiness. Finally, modelling errors associated with turbulence closures using eddy-viscosity and stress-transport-based Reynolds-averaged Navier–Stokes (RANS) simulations are investigated. It is found that while the stress-transport models offer improved predictions, inadequacies in modelling the turbulence transport terms and the isotropic treatment of the dissipation is seen to limit their accuracy.

Corresponding author
Current affiliation: Lawrence Livermore National Laboratory, USA. Email address for correspondence:
Hide All

Current affiliation: Institute of Space and Astronautical Science, JAXA, Japan

Hide All
del ÁlamoJ., JiménezJ., ZandonadeP. & MoserR. D. 2004 Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135144.
BanerjeeS., KrahlR., DurstF. & ZengerC. 2007 Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches. J. Turbul. 8, 127.
BlasiusH. 1913 Das Ähnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten. Mitt. Forsch. Arb. Geb. Ing. Wes. 131, 139.
BookeyP. B., WyckhamC. & SmitsA. J. 2005a Experimental investigations of Mach 3 shock-wave turbulent boundary layer interactions. In 35th AIAA Fluid Dynamics Conference and Exhibit. AIAA Paper 2005-4899.
BookeyP. B., WyckhamC., SmitsA. J. & MartinM. P. 2005b New experimental data of STBLI at DNS/LES accessible Reynolds numbers. AIAA Paper 2005-309.
BuckinghamE. 1914 On physically similar systems: illustrations of the use of dimensional equations. Phys. Rev. 4, 345376.
ChristensenK. T., WuY., AdrianR. J. & LaiW. 2004 Statistical imprints of structure in wall turbulence. In 42nd AIAA Aerospace Sciences Meeting and Exhibit. AIAA Paper 2004-1116.
CookA. W. 2007 Artificial fluid properties for large-eddy simulation of compressible turbulent mixing. Phys. Fluids 19 (5), 055103.
DebieveJ. F. & DupontP. 2009 Dependence between the shock and the separation bubble in a shock wave boundary layer interaction. Shock Waves 19, 499506.
DeBonisJ. R., OberkampfW. L., WolfR. T., OrkwisP. D., TurnerM. G., BabinskyH. & BenekJ. A. 2012 Assessment of computational fluid dynamics and experimental data for shock boundary-layer interactions. AIAA J. 50 (4), 891903.
DeleryJ. & DussaugeJ.-P. 2009 Some physical aspects of shock wave/boundary layer interactions. Shock Waves 19, 453468.
DollingD. S. 2001 Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA J. 39 (8), 15171531.
DollingD. S. & MurphyM. T. 1983 Unsteadiness of the separation shock wave structure in a supersonic compression ramp flow field. AIAA J. 20 (12), 16281634.
DupontP., HaddadC. & DebieveJ. F. 2006 Space and time organization in a shock-induced separated boundary layer. J. Fluid Mech. 559, 255277.
DussaugeJ. P., DupontP. & DebieveJ. F. 2006 Unsteadiness in shock wave boundary layer interactions with separation. Aerosp. Sci. Technol. 10, 8591.
FerriA. 1940 Experimental results with airfoils tested in the high-speed tunnel at Guidonia. NACA Tech. Rep. TM 946 (translation).
GaitondeD. V. & VisbalM. R. 1998 High-order schemes for Navier–Stokes equations: algorithm and implementation into FDL3DI. Air Force Research Laboratory Tech. Rep. AFRL-VA-WP-TR-1998-3060.
GanapathisubramaniB., ClemensN. T. & DollingD. S. 2006 Large-scale motions in a supersonic turbulent boundary layer. J. Fluid Mech. 556, 271282.
GanapathisubramaniB., ClemensN. T. & DollingD. S. 2007 Effects of upstream boundary layer on the unsteadiness of shock-induced separation. J. Fluid Mech. 585, 369394.
GanapathisubramaniB., ClemensN. T. & DollingD. S. 2009 Low-frequency dynamics of shock-induced separation in a compression ramp interaction. J. Fluid Mech. 636, 497–425.
GanapathisubramaniB., HutchinsN., HambletonW. T., LongmireE. K. & MarusicI. 2005 Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations. J. Fluid Mech. 524, 5780.
GarnierE. 2009 Stimulated detached eddy simulation of three-dimensional shock/boundary layer interaction. Shock Waves 19, 479486.
HadjadjA., LarssonJ., MorganB., NicholsJ. W. & LeleS. K. 2010 Large-eddy simulation of shock/boundary-layer interaction. In Center for Turbulence Research Proceedings of the Summer Program 2010. Stanford University.
HuangP. G., ColemanG. N. & BradshawP. 1995 Compressible turbulent channel flows: DNS results and modeling. J. Fluid Mech. 305, 185218.
HumbleR. A., ElsingaG. E., ScaranoF. & van OudheusdenB. W. 2009a Three-dimensional instantaneous structure of a shock wave/turbulent boundary layer interaction. J. Fluid Mech. 622, 3362.
HumbleR. A., ElsingaG. E., ScaranoF. & van OudheusdenB. W. 2009b Unsteady aspects of an incident shock wave/turbulent boundary layer interaction. J. Fluid Mech. 635, 4774.
HumbleR. A., ScaranoF. & van OudheusdenB. W. 2007 Particle image velocimetry measurements of a shock wave/turbulent boundary layer interaction. Exp. Fluids 43, 173183.
HutchinsN. & MarusicI. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.
IizukaN. 2006 Study of Mach number effect on the dynamic stability of a blunt re-entry capsule. PhD thesis, University of Tokyo, Tokyo.
JaunetV., DebieveJ. F. & DupontP. 2012 Experimental investigation of an oblique shock reflection with separation over a heated wall. In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. AIAA Paper 2012-1095.
KawaiS. & LeleS. K. 2008 Localized artificial diffusivity scheme for discontinuity capturing on curvilinear meshes. J. Comput. Phys. 227 (22), 94989526.
KawaiS. & LeleS. K. 2010 Large-eddy simulation of jet mixing in supersonic crossflows. AIAA J. 48 (9), 20632083.
KawaiS., ShankarS. K. & LeleS. K. 2010 Assessment of localized artificial diffusivity scheme for large-eddy simulation of compressible turbulent flows. J. Comput. Phys. 229 (5), 17391762.
KnightD. D. & DegrezG. 1998 Shock wave boundary layer interactions in high Mach number flows: a critical survey of current numerical prediction capabilities. Advisory Rep. 319. AGARD 2, 1.1–1.35.
KnightD., YanH., PanarasA. & ZheltovodovA. 2002 CFD validation for shock wave turbulent boundary layer interactions. In 40th AIAA Aerospace Sciences Meeting and Exhibit. AIAA Paper 2002-0437.
KovasznayL. S. G., KibensV. & BlackwelderR. F. 1970 Large-scale motion in the intermittent region of a turbulent boundary layer. J. Fluid Mech. 41, 283325.
LapsaA. P. & DahmW. J. A. 2010 Stereo particle image velocimetry of nonequilibrium turbulence relaxation in a supersonic boundary layer. Exp. Fluids 50, 89108.
LaunderB. E., ReeceG. J. & RodiW. 1975 Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 68, 537566.
LeleS. K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103 (1), 1642.
LumleyJ. & NewmanG. 1977 The design and application of upwind schemes on unstructured meshes. J. Fluid Mech. 82, 161178.
ManiA., LarssonJ. & MoinP. 2009 Suitability of artificial bulk viscosity for large-eddy simulation of turbulent flows with shocks. J. Comput. Phys. 228 (19), 73687374.
MorganB. 2012 Large-eddy simulation of shock/turbulence interaction in hypersonic vehicle isolator systems. PhD thesis, Stanford University.
MorganB., KawaiS. & LeleS. K. 2011a A parametric investigation of oblique shockwave/turbulent boundary layer interaction using LES. In 41st AIAA Fluid Dynamics Conference and Exhibit. AIAA Paper 2011-3430.
MorganB., LarssonJ., KawaiS. & LeleS. K. 2011b Improving low-frequency characteristics of recycling/rescaling inflow turbulence generation. AIAA J. 49 (3), 582597.
MorganB. & LeleS. K. 2011 Turbulence budgets in oblique shockwave/turbulent boundary layer interactions. In Center for Turbulence Research Annual Research Briefs, pp. 7586. Stanford University.
MorrisonJ. H. 1992 A compressible Navier–Stokes solver with two-equation and Reynolds stress turbulence closure models. NASA Tech. Rep. CR-4440.
ObayashiS., FujiK. & GavaliS. 1988 Navier–Stokes simulation of wind-tunnel flow using LU-ADI factorization algorithm. NASA Tech. Rep. TM-100042.
PecnikR., TerraponV. E., HamF. & IaccarinoG. 2009 Full system scramjet simulation. In Center for Turbulence Research Annual Briefs. Stanford University.
PiponniauS., DussaugeJ. P., DebieveJ. F. & DupontP. 2009 A simple model for low-frequency unsteadiness in shock-induced separation. J. Fluid Mech. 629, 87108.
PirozzoliS., BeerA., BernardiniM. & GrassoF. 2009 Computational analysis of impinging shock-wave boundary layer interaction under conditions of incipient separation. Shock Waves 19, 487497.
PirozzoliS. & BernardiniM. 2011 Direct numerical simulation database for impinging shock wave/turbulent boundary-layer interaction. AIAA J. 49 (6), 13071312.
PirozzoliS. & GrassoF. 2006 Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at inline-graphic $M= 2. 25$ . Phys. Fluids 18, 065113.
PirozzoliS., GrassoF. & GatskiT. B. 2004 Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at inline-graphic $M= 2. 25$ . Phys. Fluids 16 (3), 530545.
PirozzoliS., LarssonJ., NicholsJ. W., BernardiniM., MorganB. & LeleS. K. 2010 Analysis of unsteady effects in shock/boundary layer interactions. In Center for Turbulence Research Proceedings of the Summer Program 2010. Stanford University.
PlotkinK. J. 1975 Shock wave oscillation driven by turbulent boundary-layer fluctuations. AIAA J. 13 (8), 10361040.
PoggieJ. & SmitsA. J. 2005 Experimental evidence for Plotkin model of shock unsteadiness in separated flow. Phys. Fluids 17, 018107.
RobinetJ.-Ch. 2007 Bifurcations in shock-wave/laminar-boundary-layer interaction: global instability approach. J. Fluid Mech. 579, 85112.
SmitsA. J. & DussaugeJ.-P. 2006 Turbulent Shear Layers in Supersonic Flow. Springer.
SmitsA. J., McKeonB. J. & MarusicI. 2011 High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353375.
SouvereinL. J. 2010 On the scaling and unsteadiness of shock induced separation. PhD thesis, Université de Provence Aix–Marseille I.
SpalartP. R. & AllmarasS. R. 1994 A one-equation turbulence model for aero-dynamic flows. Rech. Aerosp. 1, 521.
StewartsonK. 1974 Multistructured boundary layers on flat plates and related bodies. Adv. Appl. Mech. 14, 145239.
TouberE. & SandhamN. D. 2008 Oblique shock impinging on a turbulent boundary layer: low-frequency mechanisms. In 38th AIAA Fluid Dynamics Conference and Exhibit. AIAA Paper 2008-4170.
TouberE. & SandhamN. D. 2009a Comparison of three large-eddy simulations of shock-induced turbulent separation bubbles. Shock Waves 19, 469478.
TouberE. & SandhamN. D. 2009b Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble. Theor. Comput. Fluid Dyn. 23, 73107.
TouberE. & SandhamN. D. 2011 Low-order stochastic modeling of low-frequency motions in reflected shock-wave/boundary-layer interactions. J. Fluid Mech. 671, 417465.
UrbinG. & KnightD. 2001 Large-eddy simulation of a supersonic boundary layer using an unstructured grid. AIAA J. 39 (7), 12881295.
WilcoxD. C. 2006 Turbulence Modeling for CFD, 3rd edn. DCW Industries, Inc.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 163 *
Loading metrics...

Abstract views

Total abstract views: 318 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd October 2017. This data will be updated every 24 hours.