Skip to main content Accessibility help

Flow structure in healthy and pathological left ventricles with natural and prosthetic mitral valves

  • V. Meschini (a1), M. D. de Tullio (a2), G. Querzoli (a3) and R. Verzicco (a4) (a5)


In this paper, the structure and the dynamics of the flow in the left heart ventricle are studied for different pumping efficiencies and mitral valve types (natural, biological and mechanical prosthetic). The problem is investigated by direct numerical simulation of the Navier–Stokes equations, two-way coupled with a structural solver for the ventricle and mitral valve dynamics. The whole solver is preliminarily validated by comparisons with ad hoc experiments. It is found that the system works in a highly synergistic way and the left ventricular flow is heavily affected by the specific type of mitral valve, with effects that are more pronounced for ventricles with reduced pumping efficiency. When the ventricle ejection fraction (ratio of the ejected fluid volume to maximum ventricle volume over the cycle) is within the physiological range (50 %–70 %), regardless of the mitral valve geometry, the mitral jet sweeps the inner ventricle surface up to the apex, thus preventing undesired flow stagnation. In contrast, for pathological ejection fractions (⩽40 %), the flow disturbances introduced by the bileaflet mechanical valve reduce the penetration capability of the mitral jet and weaken the recirculation in the ventricular apex. Although in clinical practice the fatality rates in the five-year follow-ups for mechanical and biological mitral valve replacements are essentially the same, a breakdown of the deaths shows that the causes are very different for the two classes of prostheses and the present findings are consistent with the clinical data. This might have important clinical implications for the choice of prosthetic device in patients needing mitral valve replacement.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Flow structure in healthy and pathological left ventricles with natural and prosthetic mitral valves
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Flow structure in healthy and pathological left ventricles with natural and prosthetic mitral valves
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Flow structure in healthy and pathological left ventricles with natural and prosthetic mitral valves
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence:


Hide All
Badas, M. G., Domenichini, F. & Querzoli, G. 2016 Quantification of the blood mixing in the left ventricle using finite time Lyapunov exponents. Meccanica 52 (3), 116.
Blanke, P., Willson, A. B., Webb, J. G., Achenbach, S., Piazza, N., Min, J. K., Pache, G. & Leipsic, J. 2014 Oversizing in transcatheter aortic valve replacement, a commonly used term but a poorly understood one: dependency on definition and geometrical measurements. J. Cardiovasc. Comput. Tomography 8 (1), 6776.
Cannegieter, S. C., Rosendaal, F. R. & Briet, E. 1994 Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses. Circulation 89, 635641.
Cannegieter, S. C., Rosendaal, F. R., Wintzen, A. R., van der Meer, F. J. M., Vandenbroucke, J. P. & Briët, E. 1995 Optimal oral anticoagulant therapy in patients with mechanical heart valves. New Engl. J. Med. 333, 1118.
Cen, Y. Y., Glower, D. D., Landolfo, K., Lowe, J. E., Davis, R. D., Wolfe, W. G., Pieper, C. & Peterson, C. 2001 Comparison of survival after mitral valve replacement with biologic and mechanical valves in 1139 patients. J. Thorac. Cardiovasc. Surg. 122 (3), 569597.
Chikwe, J., Yuting, P., Chiang, Y. P., Egorova, N. N., Itagaki, S. & Adams, S. H. 2015 Survival and outcomes following bioprosthetic versus mechanical mitral valve replacement in patients aged 50 to 69 years. J. Am. Med. Assoc. 313 (14), 14351442.
Choi, Y. J., Vedula, V. & Mittal, R. 2014 Computational study of the dynamics of a bileaflet mechanical heart valve in the mitral position. Ann. Biomed. Engng 42, 16681680.
Clayton, R. H., Bernus, O., Cherry, E. M., Dierckx, H., Fenton, F. H., Mirabella, L., Panfilov, A. V., Sachse, F. B., Seemann, G. & Zhang, H. 2011 Models of cardiac tissue electrophysiology: progress, challenges and open questions. Prog. Biophys. Mol. Biol. 104, 2248.
Cordero, C. D., Rossini, L., Martinez-Lagazpi, P., Del Villar, C. P., Benito, Y., Barrio, A., Fernandez-Aviles, F., Yotti, R., del Alamo, J. C. & Bermejo, J. 2015 Prediction of intraventricular thrombosis by quantitative imaging of stasis: a pilot color-Doppler study in patients with acute myocardial infarction. J. Am. Coll. Cardiol. 65 (10), A1310.
De Bacco, W. M., Sartori, A. P., Sant’Anna, J. R. M., Santos, M. F, Prates, P. R., Kalil, R. A. K. & Nesralla, I. A. 2009 Risk factors for hospital mortality in valve replacement with mechanical prosthesis. J. Braz. Cardiovasc. Surg. 24 (3), 334340.
De Vita, F., de Tullio, M. D. & Verzicco, R. 2016 Numerical simulation of the non-Newtonian blood flow through a mechanical aortic valve. Theor. Comput. Fluid Dyn. 30 (1), 129138.
Einstein, D. R., Kunzelman, K. S., Reinhall, P. G., Nicosia, M. A. & Cochran, R. P. 2005 Non-linear fluid-coupled computational model of the mitral valve. J. Heart Valve Dis. 14 (3), 376385.
Fadlun, E. A., Verzicco, R., Orlandi, P. & Mohd-Yosuf, J. 2000 Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161, 3560.
Falchi, M., Querzoli, G. & Romano, G. P. 2006 Robust evaluation of the dissimilarity between interrogation windows in image velocimetry. Exp. Fluids 41, 279293.
Faludi, R., Szulik, M., D’hooge, J., Herijgers, P., Rademakers, F., Pedrizzetti, G. & Voig, J. U. 2010 Left ventricular flow patterns in healthy subjects and patients with prosthetic mitral valves: an in vivo study using echocardiographic particle image velocimetry. J. Thorac. Cardiovasc. Surg. 139, 15011510.
Fortini, S., Espa, S., Querzoli, G. & Cenedese, A. 2015 Turbulence investigation in a laboratory model of the ascending aorta. J. Turbul. 16, 208224.
Fortini, S., Querzoli, G., Espa, S. & Cenedese, A. 2013 Three-dimensional structure of the flow inside the left ventricle of the human heart. Exp. Fluids 54, 19.
Griffith, B. E., Luo, X., McQueen, D. M. & Peskin, C. S. 2009 Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method. Intl J. Appl. Mech. 1 (1), 137177.
Grigioni, M., Daniele, C., D’Avenio, G. & Barbaro, V. 2001 The influence of the leaflets’ curvature on the flow field in two bileaflet prosthetic heart valves. J. Biomech. 34, 613621.
Hammermeister, K., Sethi, G. K., Henderson, W. G., Grover, F. L., Oprian, C. & Rahimtoola, S. H. 2000 Outcomes 15 years after valve replacement with a mechanical versus a bioprosthetic valve: final report of the veterans affairs randomized trial. J. Am. Coll. Cardiol. 36 (4), 11521158.
Harfi, T. T., Seo, J. H., Yasir, H. S., Welsh, N., Meyer, S. A., Abraham, T. P., Gerge, R. T. & Mittal, R. 2017 The E-wave Propagation Index (EPI): a novel echocardiographic parameter for prediction of left ventricular thrombus. Derivation from computational fluid dynamic modeling and validation on human subjects. Int. J. Cardiol. 227, 662667.
Hoffmann, G., Lutter, G. & Cremer, J. 2008 Durability of bioprosthetic cardiac valves. Deutsches Arzteblatt Int. 105 (8), 143148.
Kocica, M. J., Corno, A. F., Carreras-Costa, F., Ballester-Rodes, M., Moghbel, M. C., Cueva, C. N. C., Lackovic, V., Kanjuh, V. I. & Torrent-Guasp, F. 2006 The helical ventricular myocardial band: global, three-dimensional, functional architecture of the ventricular myocardium hemodynamics of the left ventricle. Eur. J. Cardiothoracic Surg. 295, 521540.
Levine, R. A., Triulzi, M. O., Harrigan, P. & Weyman, A. E. 1987 The relationship of mitral annular shape to the diagnosis of mitral valve prolapse. Circulation 75, 756767.
Machler, H., Perthel, M., Reiter, G., Reiter, U., Zink, M., Bergmann, P., Waltensdorfer, A. & Laas, J. 2004 Influence of bileaflet prosthetic mitral valve orientation on left ventricular flow: an experimental in vivo magnetic resonance imaging study. Eur. J. Cardiothoracic Surg. 26 (4), 747753.
Mahmood, F., Gorman, J. H., Subramanian, B., Gorman, R. C., Panzica, P. J., Hagberg, R. C., Lerner, A. B., Hess, P. E., Maslow, A. & Khabbaz, K. R. 2010 Changes in mitral valve annular geometry after repair: saddle-shaped versus flat annuloplasty rings. Ann. Thorac. Surg. 90, 12121220.
McQueen, D. M. & Peskin, C. S. 2000 A three-dimensional computer model of the human heart for studying cardiac fluid dynamics. ACM SIGGRAH Comput. Graphics 34 (1), 5660.
Meschini, V., de Tullio, M. D., Querzoli, G. & Verzicco, R. 2016 A computational approach for multi-physics biological flows. ECCOMAS Newsletter, June 2016, 1013.
Mihalef, V., Ionasec, P., Shuarma, P., Georgescu, B., Voigt, I., Suehling, M. & Comanicu, D. 2011 Patient-specific modeling of whole heart anatomy, dynamics, and hemodynamics from four-dimensional cardiac CT images. J. R. Soc. Interface Focus 1, 286296.
Pedrizzetti G., D. F. & Tonti, G. 2010 On the left ventricular vortex reversal after mitral valve replacement. Ann. Biomed. Engng 38, 769773.
Pibarot, P. & Dumesnil, J. G. 2009 Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation 119, 10341048.
Pibarot, P. & Dumesnil, J. G. 2012 Doppler echocardiographic evaluation of prosthetic valve function. Heart 98, 6978.
Qiu, Z., Chen, X., Xu, M., Jiang, Y., Xiao, L., Liu, L. & Wang, L. 2010 Is mitral valve repair superior to replacement for chronic ischemic mitral regurgitation with left ventricular dysfunction? J. Cardiothoracic Surg. 5, 107.
Querzoli, G., Fortini, S. & Cenedese, A. 2010 Effect of the prosthetic mitral valve on vortex dynamics and turbulence of the left ventricular flow. Phys. Fluids 22, 041901.
Salgo, S. I., Gorman, J. H. C., Gorman, R. M., Jackson, B., Bowen, F. W., Plappert, T. G., Sutton, M. & Edmundus, L. H. 2002 Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation 106, 711717.
Seo, J. H., Vedula, V., Abraham, T., Lardo, A., Dawoud, F., Luo, H. & Mittal, R. 2014 Effect of the mitral valve on diastolic flow patterns. Phys. Fluids 26, 121901.
Siginer, D. A., De Kee, D. & Chhabra, R. P. 1999 Advances in the Flow and Rheology of Non-Newtonian Fluids. Elsevier.
Spandan, V., Meschini, V., de Tullio, M. D., Querzoli, G., Lohse, D. & Verzicco, R. 2017 A parallel interaction potential approach for large scale simulations of deformable interfaces and membranes. J. Comput. Phys. 348, 567590.
Sung, S. C., Chang, Y. H., Lee, H. D. & Woo, J. S. 2008 A novel technique of supra-annular mitral valve replacement. Annals of Thoracic Surgery 86 (3), 10331035.
Tanaka, M., Wado, S. & Nakamura, M. 2012 Computational Biomechanics. (Theoretical Background and Biological/Biomedical Problems, vol. 3) , Springer.
de Tullio, M. D., Cristallo, A., Balaras, E. & Verzicco, R. 2009 Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve. J. Fluid Mech. 662, 259290.
de Tullio, M. D. & Pascazio, G. 2016 A moving least-squares immersed boundary method for simulating the fluid–structure interaction of elastic bodies with arbitrary thickness. J. Comput. Phys. 235, 201225.
de Tullio, M. D., Pedrizzetti, G. & Verzicco, R. 2011 On the effect of aortic root geometry on the coronary entry-flow after a bileaflet mechanical heart valve implant: a numerical study. Acta Mech. 216 (1), 147163.
Van Gelder, A. 1998 Approximate simulation of elastic membranes by triangulated spring meshes. J. Graph. Tools 3, 2141.
Vannella, M. & Balaras, E. 2009 A moving-least-squares reconstruction for embedded-boundary formulations. J. Comput. Phys. 228 (18), 66176628.
Vedula, V., Seo, J. H., Lardo, A. C. & Mittal, R. 2016 Effect of trabeculae and papillary muscles on the hemodynamics of the left ventricle. Comput. Fluid Dyn. 30, 321.
Votta, E., Caiani, F., Veronesi, F., Soncini, M., Montevecchi, F. & Redaelli, A. 2008 Mitral valve finite-element modelling from ultrasound data: a pilot study for a new approach to understand mitral function and clinical scenarios. Phil. Trans. R. Soc. Lond. 366, 34113434.
Vukićević, M., Fortini, S., Querzoli, G., Espa, S. & Pedrizzetti, G. 2012 Experimental study of an asymmetric heart valve prototype. Eur. J. Mech. (B/Fluids) 35, 5460.
Wattona, P. N., Luob, X. Y., Yinc, M., Bernaccad, G. M. & Wheatleyd D., J. 2008 Effect of ventricle motion on the dynamic behavior of chorded mitral valves. J. Fluids Struct. 24 (1), 5874.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Flow structure in healthy and pathological left ventricles with natural and prosthetic mitral valves

  • V. Meschini (a1), M. D. de Tullio (a2), G. Querzoli (a3) and R. Verzicco (a4) (a5)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.