Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-25T09:26:04.838Z Has data issue: false hasContentIssue false

Fluctuation assisted spreading of a fluid filled elastic blister

Published online by Cambridge University Press:  11 May 2018

Andreas Carlson*
Affiliation:
Mechanics Division, Department of Mathematics, University of Oslo, 0316 Oslo, Norway
*
Email address for correspondence: acarlson@math.uio.no

Abstract

In this theoretical and numerical study, we show how spatially extended fluctuations can influence and dominate the dynamics of a fluid filled elastic blister as it deforms onto a pre-wetted solid substrate. To describe the blister dynamics, we develop a stochastic elastohydrodynamic framework that couples the viscous flow, the elastic bending of the interface and the noise from the environment. We deploy a scaling analysis to find the elastohydrodynamic spreading law $\hat{R}\sim \hat{t}^{1/11}$ , where $\hat{R}$ is the spreading radius and $\hat{t}$ is time, a direct analogue to the capillary spreading of drops, while the inclusion of noise in our model highlights that the dynamics speeds up significantly $\hat{R}\sim \hat{t}^{1/6}$ as local changes in curvature at the spreading front enhance the peeling of the elastic interface from the substrate. These fluctuations have a pronounced influence on the shape of the deforming blister and lead to the formation of a precursor film similar to a perfectly wetting droplet. Moreover, our analysis identifies a distinct criterion for the transition between the deterministic and the stochastic spreading regime, which is further illustrated by numerical simulations.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alert, R. & Casademunt, J. 2016 Bleb nucleation through membrane peeling. Phys. Rev. Lett. 116, 068101.CrossRefGoogle ScholarPubMed
Al-Housseiny, T. T., Christov, I. C. & Stone, H. A. 2013 Two-phase fluid displacement and interfacial instabilities under elastic membranes. Phys. Rev. Lett. 111, 034502.Google Scholar
Amberg, G., Tönhardt, R. & Winkler, C. 2012 Finite element simulations using symbolic computing. Math. Comput. Simul. 49, 149165.Google Scholar
Arutkin, M., Ledesma-Alonso, R., Salez, T. & Raphaël, E. 2017 Elastohydrodynamic wake and wave resistance. J. Fluid Mech. 829, 538550.Google Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Belardinelli, D., Sbragaglia, M., Gross, M. & Andreotti, B. 2016 Thermal fluctuations of an interface near a contact line. Phys. Rev. E 94, 052803.Google Scholar
Bell, G. I. 1978 Models for the specific adhesion of cells to cells. Science 200, 618627.CrossRefGoogle ScholarPubMed
Bongrand, P. 1988 Physical Basis for Cell Adhesion. CRC.Google Scholar
Boyanova, P. T., Do-Quang, M. & Neytcheva, M. M. 2012 Efficient preconditioners for large scale binary Cahn–Hilliard models. Comput. Meth. Appl. Maths 12, 122.Google Scholar
Cantat, I. & Misbah, C. 1998 Dynamics and similarity laws for adhering vesicles in haptotaxis. Phys. Rev. Lett. 57, 235238.Google Scholar
Carlson, A. & Mahadevan, L. 2015a Elastohydrodynamics and kinetics of protein patterning in the immunological synapse. PLOS Comput. Biol. 11 (12), e1004481.Google Scholar
Carlson, A. & Mahadevan, L. 2015b Protein mediated membrane adhesion. Phys. Fluids 27, 051901.Google Scholar
Carlson, A. & Mahadevan, L. 2016 Similarity and singularity in adhesive elastohydrodynamic touchdown. Phys. Fluids 28, 011702.Google Scholar
Cartagena-Rivera, A. X., Logue, J. S., Waterman, C. M. & Chadwick, R. S. 2016 Actomyosin cortical mechanical properties in nonadherent cells determined by atomic force microscopy. Biophys. J. 110, 25282539.Google Scholar
Carvalho, K., Tsai, F.-C., Lees, E., Voituriez, R., Koenderink, G. H. & Sykes, C. 2013 Active contraction of biomimetic cortices. Proc. Natl Acad. Sci. USA 110, 1645616461.Google Scholar
Chaudhury, M. & Pocius, A. V.(Eds) 2002 Adhesion Science and Engineering: Surfaces, Chemistry and Applications. Elsevier Science B.V.Google Scholar
Davidovitch, B., Moro, E. & Stone, H. A. 2005 Spreading of viscous fluid drops on a solid substrate assisted by thermal fluctuations. Phys. Rev. Lett. 95, 244505.Google Scholar
Diez, J. A., Gonzalez, A. G. & Fernandez, R. 2016 Metallic-thin-film instability with spatially correlated thermal noise. Phys. Rev. E 93, 013120.Google Scholar
Elbaz, S. B. & Gat, A.D 2016 Axial creeping flow in the gap between a rigid cylinder and a concentric elastic tube. J. Fluid Mech. 806, 580602.Google Scholar
Ètienne, J. & Duperray, A. 2011 Initial dynamics of cell spreading are governed by dissipation in the actin cortex. Biophys. J. 101 (3), 611621.Google Scholar
Fetzer, R., Rauscher, M., Seemann, R., Jacobs, K. & Mecke, K. 2007 Thermal noise influences fluid flow in thin films during spinodal dewetting. Phys. Rev. Lett. 99, 114503.Google Scholar
Fox, R. F. & Uhlenbeck, G. E. 1970 Contributions to non-equilibrium thermodynamics. I. Theory of hydrodynamical fluctuations. Phys. Fluids 13, 1893.CrossRefGoogle Scholar
Garcia-Ojalvo, J., Hernandez-Machado, A. & Sancho, M. 1993 Effects of external noise on the Swift–Hohenberg equation. Phys. Rev. Lett. 71, 0031‐9007.Google Scholar
Grün, G., Mecke, K. & Rauscher, M. 2006 Thin-film flow influenced by thermal noise. J. Stat. Phys. 122, 12611291.Google Scholar
Herminghaus, S., Jacobs, K. & Seemann, R. 2001 The glass transition of thin polymer films: some questions, and a possible answer. Eur. Phys. J. E 5, 531538.Google Scholar
Hewitt, I. J., Balmforth, N. J. & De Bruyn, J. R. 2015 Elastic-plated gravity currents. Eur. J. Appl. Maths 26, 131.Google Scholar
Hosoi, A. E. & Mahadevan, L. 2007 Peeling, healing and bursting in a lubricated elastic sheet. Phys. Rev. Lett. 93, 137802.Google Scholar
Johansson, P., Carlson, A. & Hess, B. 2015 Water-substrate physico-chemistry in wetting dynamics. J. Fluid Mech. 781, 695711.Google Scholar
Juel, A., Pihler-Puzović, A. & Heil, M. 2018 Instabilities in blistering. Annu. Rev. Fluid Mech. 50 (1), 691714.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics. Elsevier.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1986 Theory of Elasticity. Elsevier.Google Scholar
Le Goff, T., Politi, P. & Pierre-Louis, O. 2014 Frozen states and order-disorder transition in the dynamics of confined membranes. Phys. Rev. E 90, 032114.Google ScholarPubMed
Le Goff, T., Politi, P. & Pierre-Louis, O. 2015 Transition to coarsening for confined one-dimensional interfaces with bending rigidity. Phys. Rev. E 92, 022918.Google Scholar
Leong, F. Y. & Chiam, K.-H. 2010 Adhesive dynamics of lubricated films. Phys. Rev. E 81, 041923.Google Scholar
Lister, J. R., Peng, G. G. & Neufeld, J. A. 2013 Viscous control of peeling an elastic sheet by bending and pulling. Phys. Rev. Lett. 111, 154501.CrossRefGoogle Scholar
Longley, J. E., Mahadevan, L. & Chaudhury, M. K. 2013 How a blister heals. Europhys. Lett. 104, 46002.Google Scholar
Michaut, C. 2011 Dynamics of magmatic intrusions in the upper crust: theory and applications to laccoliths on earth and the moon. J. Geophys. Res. 116, B05205.Google Scholar
Monzel, C., Schmidt, D., Kleusch, C., Kirchenbüchler, D., Seifert, U., Smith, A.-S., Sengupta, K. & Merkel, R. 2015 Measuring fast stochastic displacements of bio-membranes with dynamic optical displacement spectroscopy. Nature Commun. 6, 8162.CrossRefGoogle ScholarPubMed
Moseler, M. & Landman, U. 2000 Formation, stability, and breakup of nanojets. Science 298, 11651169.Google Scholar
Nesic, S., Cuerno, R., Moro, E. & Kondic, L. 2015a Dynamics of thin fluid films controlled by thermal fluctuations. Eur. Phys. J. Spec. Top. 224, 379387.CrossRefGoogle Scholar
Nesic, S., Cuerno, R., Moro, E. & Kondic, L. 2015b Fully nonlinear dynamics of stochastic thin-film dewetting. Phys. Rev. E 92, 061002(R).Google Scholar
Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931980.Google Scholar
Pihler-Puzovic, D., Illien, P., Heil, M. & Juel, A. 2012 Suppression of complex fingerlike patterns at the interface between air and a viscous fluid by elastic membranes. Phys. Rev. Lett. 108, 074502.Google Scholar
Pihler-Puzović, D., Juel, A., Peng, G., Lister, J. & Heil, M. 2015 Displacement flows under elastic membranes. Part 1. Experiments and direct numerical simulations. J. Fluid Mech. 784, 487511.Google Scholar
Peng, G., Pihler-Puzović, D., Juel, A., Heil, M. & Lister, J. 2015 Displacement flows under elastic membranes. Part 2. Analysis of interfacial effects. J. Fluid Mech. 784, 512547.Google Scholar
Reister-Gottfried, E., Sengupta, K., Lorz, B., Sackmann, E., Seifert, U. & Smith, A.-S. 2008 Dynamics of specific vesicle-substrate adhesion: from local events to global dynamics. Phys. Rev. Lett. 101, 208103.Google Scholar
Rubin, S., Tulchinsky, A., Gat, A. D. & Bercovici, M. 2017 Elastic deformations driven by non-uniform lubrication flows. J. Fluid Mech. 812, 841865.CrossRefGoogle Scholar
Seemann, R., Herminghaus, S. & Jacobs, K. 2001 Dewetting patterns and molecular forces: a reconciliation. Phys. Rev. Lett. 86, 5534.Google Scholar
Snoeijer, J. 2017 Analogies between elastic and capillary interfaces. Phys. Rev. Fluids 1, 060506.Google Scholar
Tanner, L. H. 1979 The spreading of silicone oil drops on horizontal surfaces. J. Phys. D: Appl. Phys. 12, 14731484.Google Scholar
Wilking, J. N., Zaburdaev, V., De Volder, M., Losick, R., Brenner, M. P. & Weitz, D. A. 2013 Liquid transport facilitated by channels in Bacillus subtilus biofilms. Proc. Natl. Acad. Sci. 110, 848852.Google Scholar
Young, Y.-N. & Stone, H. A. 2017 Long-wave dynamics of an elastic sheet lubricated by a thin liquid film on a wetting substrate. Phys. Rev. Fluids 2, 064001.Google Scholar