Skip to main content
×
Home
    • Aa
    • Aa

The free compressible viscous vortex

  • Tim Colonius (a1), Sanjiva K. Lele (a1) and Parviz Moin (a1)
Abstract

The effects of compressibility on free (unsteady) viscous heat-conducting vortices are investigated. Analytical solutions are found in the limit of large, but finite, Reynolds number, and small, but finite, Mach number. The analysis shows that the spreading of the vortex causes a radial flow. This flow is given by the solution of an ordinary differential equation (valid for any Mach number), which gives the dependence of the radial velocity on the tangential velocity, density, and temperature profiles of the vortex; estimates of the radial velocity found by solving this equation are found to be in good agreement with numerical solutions of the full equations. The experiments of Mandella (1987) also report a radial flow in the vortex, but their estimates are much larger than the analytical predictions, and it is found that the flow inferred from the iexperiments violates the Second Law of Thermodynamics for two-dimensional axisymmetric flow. It is speculated that three-dimensionality is the cause of this discrepancy. To obtain detailed analytical solutions, the equations for the viscous evolution are expanded in powers of Mach number, M. Solutions valid to O(M2), are discussed for vortices with finite circulation. Two specific initial conditions – vortices with initially uniform entropy and with initially uniform density – are analysed in detail. It is shown that swirling axisymmetric compressible flows generate negative radial velocities far from the vortex core owing to viscous effects, regardless of the initial distributions of vorticity, density and entropy.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 14 *
Loading metrics...

Abstract views

Total abstract views: 55 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th May 2017. This data will be updated every 24 hours.