Skip to main content Accessibility help

Interaction between hairy surfaces and turbulence for different surface time scales

  • Johan Sundin (a1) and Shervin Bagheri (a1)


Surfaces with filamentous structures are ubiquitous in nature on many different scales, ranging from forests to micrometre-sized cilia in organs. Hairy surfaces are elastic and porous, and it is not fully understood how they modify turbulence near a wall. The interaction between hairy surfaces and turbulent flows is here investigated numerically in a turbulent channel flow configuration at friction Reynolds number $Re_{\unicode[STIX]{x1D70F}}\approx 180$ . We show that a filamentous bed of a given geometry can modify a turbulent flow very differently depending on the resonance frequency of the surface, which is determined by the elasticity and mass of the filaments. Filaments having resonance frequencies lower than the main frequency content of the turbulent wall-shear stress conform to slowly travelling elongated streaky structures, since they are too slow to adapt to fluid forces of higher frequencies. On the other hand, a bed consisting of stiff and low-mass filaments has a high resonance frequency and shows local regions of increased permeability, which results in large entrainment and a vast increase in drag.


Corresponding author

Email address for correspondence:


Hide All
Battiato, I., Bandaru, P. R. & Tartakovsky, D. M. 2010 Elastic response of carbon nanotube forests to aerodynamic stresses. Phys. Rev. Lett. 105 (14), 144504.
Bisshopp, K. E. & Drucker, D. C. 1945 Large deflection of cantilever beams. Q. Appl. Maths 3 (3), 272275.
Brandt, A. 2011 Noise and Vibration Analysis: Signal Analysis and Experimental Procedures. Wiley.
Breugem, W. P., Boersma, B. J. & Uittenbogaard, R. E. 2006 The influence of wall permeability on turbulent channel flow. J. Fluid Mech. 562, 3572.
Brücker, C. 2011 Interaction of flexible surface hairs with near-wall turbulence. J. Phys.: Condens. Matter 23 (18), 184120.
Brücker, C., Bauer, D. & Chaves, H. 2007 Dynamic response of micro-pillar sensors measuring fluctuating wall-shear-stress. Exp. Fluids 42 (5), 737749.
Chopard, B., Kontaxakis, D., Lagrava, D., Latt, J., Malaspinas, O., Parmigiani, A., Rybak, T. & Sagon, Y.2015 The palabos project. FlowKit Ltd (
De Langre, E. 2008 Effects of wind on plants. Annu. Rev. Fluid Mech. 40, 141168.
Do-Quang, M., Amberg, G., Brethouwer, G. & Johansson, A. V. 2014 Simulation of finite-size fibers in turbulent channel flows. Phys. Rev. E 89 (1), 013006.
Dorschner, B., Chikatamarla, S. S., Bösch, F. & Karlin, I. V. 2015 Grad’s approximation for moving and stationary walls in entropic lattice Boltzmann simulations. J. Comput. Phys. 295, 340354.
Favier, J., Dauptain, A., Basso, D. & Bottaro, A. 2009 Passive separation control using a self-adaptive hairy coating. J. Fluid Mech. 627, 451483.
Freund, R. J., Wilson, W. J. & Mohr, D. L. 2010 Statistical Methods. Academic Press.
Gopinath, A. & Mahadevan, L. 2011 Elastohydrodynamics of wet bristles, carpets and brushes. Proc. R. Soc. Lond. A 467 (2130), 20100228.
Gosselin, F. P. & De Langre, E. 2011 Drag reduction by reconfiguration of a poroelastic system. J. Fluid. Struct. 27 (7), 11111123.
Guo, Z., Zheng, C. & Shi, B. 2002 Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65 (4), 046308.
Hansen, M. O. 2015 Aerodynamics of Wind Turbines. Routledge.
Hu, Z., Morfey, C. L. & Sandham, N. D. 2006 Wall pressure and shear stress spectra from direct simulations of channel flow. AIAA J. 44 (7), 15411549.
Itoh, M., Tamano, S., Iguchi, R., Yokota, K., Akino, N., Hino, R. & Kubo, S. 2006 Turbulent drag reduction by the seal fur surface. Phys. Fluids 18 (6), 065102.
Jiménez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.
Jimenez, J., Uhlmann, M., Pinelli, A. & Kawahara, G. 2001 Turbulent shear flow over active and passive porous surfaces. J. Fluid Mech. 442, 89117.
Kim, E. & Choi, H. 2014 Space–time characteristics of a compliant wall in a turbulent channel flow. J. Fluid Mech. 756, 3053.
Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G. & Viggen, E. M. 2017 The Lattice Boltzmann Method. Springer.
Kuwata, Y. & Suga, K. 2016 Imbalance-correction grid-refinement method for lattice Boltzmann flow simulations. J. Comput. Phys. 311, 348362.
Lācis, U., Zampogna, G. A. & Bagheri, S. 2017 A computational continuum model of poroelastic beds. Proc. R. Soc. Lond. A 473 (2199), 20160932.
Lagrava, D., Malaspinas, O., Latt, J. & Chopard, B. 2012 Advances in multi-domain lattice Boltzmann grid refinement. J. Comput. Phys. 231 (14), 48084822.
Latt, J., Chopard, B., Malaspinas, O., Deville, M. & Michler, A. 2008 Straight velocity boundaries in the lattice Boltzmann method. Phys. Rev. E 77, 056703.
Lee, M. & Moser, R. D. 2015 Direct numerical simulation of turbulent channel flow up to Re 𝜏 ≈ 5200. J. Fluid Mech. 774, 395415.
Lindström, S. B. & Uesaka, T. 2007 Simulation of the motion of flexible fibers in viscous fluid flow. Phys. Fluids 19 (11), 113307.
Liu, G., Wang, A., Wang, X. & Liu, P. 2016 A review of artificial lateral line in sensor fabrication and bionic applications for robot fish. Appl. Bionics Biomech. 2016, 4732703.
Nepf, H. M. 2012 Flow and transport in regions with aquatic vegetation. Annu. Rev. Fluid Mech. 44, 123142.
Orlandi, P. & Leonardi, S. 2006 DNS of turbulent channel flows with two- and three-dimensional roughness. J. Turbul. 7 (7), N73.
Orlandi, P., Leonardi, S., Tuzi, R. & Antonia, R. A. 2003 Direct numerical simulation of turbulent channel flow with wall velocity disturbances. Phys. Fluids 15 (12), 35873601.
Perot, B. & Moin, P. 1995 Shear-free turbulent boundary layers. Part 1. Physical insights into near-wall turbulence. J. Fluid Mech. 295, 199227.
Peskin, C. S. 2002 The immersed boundary method. Acta Numerica 11, 479517.
Pope, S. B. 2001 Turbulent Flows. IOP Publishing.
Ross, R. F. & Klingenberg, D. J. 1997 Dynamic simulation of flexible fibers composed of linked rigid bodies. J. Chem. Phys. 106 (7), 29492960.
Rosti, M. E. & Brandt, L. 2017 Numerical simulation of turbulent channel flow over a viscous hyper-elastic wall. J. Fluid Mech. 830, 708735.
Rosti, M. E., Brandt, L. & Pinelli, A. 2018 Turbulent channel flow over an anisotropic porous wall–drag increase and reduction. J. Fluid Mech. 842, 381394.
Schmid, C. F., Switzer, L. H. & Klingenberg, D. J. 2000 Simulations of fiber flocculation: Effects of fiber properties and interfiber friction. J. Rheol. 44 (4), 781809.
Skotheim, J. M. & Mahadevan, L. 2004 Soft lubrication. Phys. Rev. Lett. 92 (24), 245509.
Skotheim, J. M. & Mahadevan, L. 2005 Soft lubrication: the elastohydrodynamics of nonconforming and conforming contacts. Phys. Fluids 17 (9), 092101.
Tao, J. & Yu, X. B. 2012 Hair flow sensors: from bio-inspiration to bio-mimicking – a review. Smart Mater. Struct. 21 (11), 113001.
Wan, F., Ye, Q., Yu, B., Pei, X. & Zhou, F. 2013 Multiscale hairy surfaces for nearly perfect marine antibiofouling. J. Mater. Chem. B 1 (29), 35993606.
Wu, J. & Aidun, C K. 2010a A method for direct simulation of flexible fiber suspensions using lattice Boltzmann equation with external boundary force. Intl J. Multiphase Flow 36 (3), 202209.
Wu, J. & Aidun, C. K. 2010b Simulating 3D deformable particle suspensions using lattice Boltzmann method with discrete external boundary force. Intl J. Numer. Meth. 62 (7), 765783.
Yamamoto, S. & Matsuoka, T. 1993 A method for dynamic simulation of rigid and flexible fibers in a flow field. J. Chem. Phys. 98 (1), 644650.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Interaction between hairy surfaces and turbulence for different surface time scales

  • Johan Sundin (a1) and Shervin Bagheri (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.