Skip to main content Accessibility help
×
×
Home

Koopman-mode decomposition of the cylinder wake

  • Shervin Bagheri (a1)
Abstract

The Koopman operator provides a powerful way of analysing nonlinear flow dynamics using linear techniques. The operator defines how observables evolve in time along a nonlinear flow trajectory. In this paper, we perform a Koopman analysis of the first Hopf bifurcation of the flow past a circular cylinder. First, we decompose the flow into a sequence of Koopman modes, where each mode evolves in time with one single frequency/growth rate and amplitude/phase, corresponding to the complex eigenvalues and eigenfunctions of the Koopman operator, respectively. The analytical construction of these modes shows how the amplitudes and phases of nonlinear global modes oscillating with the vortex shedding frequency or its harmonics evolve as the flow develops and later sustains self-excited oscillations. Second, we compute the dynamic modes using the dynamic mode decomposition (DMD) algorithm, which fits a linear combination of exponential terms to a sequence of snapshots spaced equally in time. It is shown that under certain conditions the DMD algorithm approximates Koopman modes, and hence provides a viable method to decompose the flow into saturated and transient oscillatory modes. Finally, the relevance of the analysis to frequency selection, global modes and shift modes is discussed.

Copyright
Corresponding author
Email address for correspondence: shervin@mech.kth.se
References
Hide All
Artuso, R., Hugh, R. & Cvitanović, P. 2013 ‘Why does it work?’ In Chaos: Classical and Quantum (ed. Cvitanović, P., Artuso, R., Mainieri, R., Tanner, G. & Vattay, G.). Niels Bohr Institute, chaosBook.org/version14.
Barkley, D. 2006 Linear analysis of the cylinder wake mean flow. Europhys. Lett. 75, 750756.
Chen, K., Tu, J. H. & Rowley, C. W. 2012 Variants of dynamic mode decomposition: boundary condition, Koopman, and Fourier analyses. J. Nonlinear Sci. 22 (6), 887915.
Chomaz, J. M. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37, 357392.
Cvitanović, P. 2013 ‘Trace formulas’. In Chaos: Classical and Quantum (ed. Cvitanović, P., Artuso, R., Mainieri, R., Tanner, G. & Vattay, G.). Niels Bohr Institute, chaosBook.org/version14.
Cvitanović, P., Artuso, R., Mainieri, R., Tanner, G. & Vattay, G. (Eds) 2013 Chaos: Classical and Quantum. Niels Bohr Institute, chaosBook.org.
Cvitanović, P. & Eckhardt, B. 1991 Periodic orbit expansions for classical smooth flows. J. Phys. A: Math. Gen. 24, L237L241.
Duke, D., Soria, J. & Honnery, D. 2012 An error analysis of the dynamic mode decomposition. Exp. Fluids 52, 529542.
Gaspard, P. 1998 Chaos, Scattering, and Statistical Mechanics. Cambridge University Press.
Gaspard, P., Nicolis, G., Provata, A. & Tasaki, S. 1995 Spectral signature of the pitchfork bifurcation: Liouville equation approach. Phys. Rev. E 51 (1), 7494.
Gaspard, P. & Tasaki, S. 2001 Liouvillian dynamics of the Hopf bifurcation. Phys. Rev. E 64, 056232.
Guckenheimer, J. & Holmes, P. 1983 Nonlinear Oscillations, Dynamical System and Bifuracations of Vector Fields. Springer.
Huerre, P. & Monkewitz, P. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473537.
Koopman, B. 1931 Hamiltonian systems and transformations in Hilbert space. Proc. Natl Acad. Sci. USA 17, 315318.
Lasota, A. & Mackey, C. M. 1994 Chaos, Fractals and Noise: Stochastic Aspects of Dynamics. Springer.
Lumley, J. L. 1970 Stochastic Tools in Turbulence. Academic.
Marquet, O., Lombardi, M., Chomaz, J. M., Sipp, D. & Jacquin, L. 2009 Direct and adjoint global modes of a recirculation bubble: lift-up and convective non-normalities. J. Fluid Mech. 622, 121.
Mezić, I. 2005 Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41 (1), 309325.
Mezić, I. 2013 Analysis of fluid flows via spectral properties of the koopman operator. Annu. Rev. Fluid Mech. 45 (1), 357378.
Muld, T., Efraimsson, G. & Henningson, D. 2012 Mode decomposition on surface-mounted cube. Flow Turbul. Combust. 88, 279310.
Noack, B., Afanasiev, K., Morzynski, M., Tadmor, G. & Thiele, F. 2003 A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335363.
Perot, J. B. 1993 An analysis of the fractional step method. J. Comput. Phys. 108 (1), 5158.
Pier, B. 2002 On the frequency selection of finite-amplitude vortex shedding in the cylinder wake. J. Fluid Mech. 458, 407417.
Provansal, M., Mathis, C. & Boyer, L. 1987 Bénard–von Kármán instability: transient and forcing regimes. J. Fluid Mech. 182, 122.
Reynolds, W. C. & Hussain, A. K. M. F. 1972 The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54 (2), 263288.
Rowley, C. W., Mezić, I., Bagheri, S., Schlatter, P. & Henningson, D. S. 2009 Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115127.
Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.
Schmid, P. J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.
Schmid, P. 2011 Application of the dynamic mode decomposition to experimental data. Exp. Fluids 50, 11231130.
Schmid, P., Li, L., Juniper, M. & Pust, O. 2011 Applications of the dynamic mode decomposition. Theoret. Comput. Fluid Dyn. 25, 249259.
Seena, A. & Sung, H. J. 2011 Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations. Intl J. Heat Fluid Flow 32 (6), 10981110.
Semeraro, O., Bellani, G. & Lundell, F. 2012 Analysis of time-resolved piv measurements of a confined turbulent jet using pod and Koopman modes. Exp. Fluids, 53 (5), 12031220.
Sipp, D. & Lebedev, A. 2007 Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. J. Fluid Mech. 593, 333358.
Tadmor, G., Lehmann, O., Noack, B. & Morzynski, M. 2010 Mean field representation of the natural and actuated cylinder wake flow. Phys. Fluids 22, 034102.
Taira, K. & Colonius, T. 2007 The immersed boundary method: a projection approach. J. Comput. Phys. 225, 21182137.
Thiria, B. & Wesfreid, J. E. 2007 Stability properties of forced wakes. J. Fluid Mech. 579, 137161.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed