Skip to main content Accessibility help
×
Home

Maximum-entropy closure for a Galerkin model of an incompressible periodic wake

  • Bernd R. Noack (a1) and Robert K. Niven (a2)

Abstract

A statistical closure is proposed for a Galerkin model of an incompressible periodic cylinder wake. This closure employs Jaynes’ maximum entropy principle to infer the probability distribution for mode amplitudes using exact statistical balance equations as side constraints. The analysis predicts mean amplitude values and modal energy levels in good agreement with direct Navier–Stokes simulation. In addition, it provides an analytical equation for the modal energy distribution.

Copyright

Corresponding author

Email address for correspondence: Bernd.Noack@univ-poitiers.fr

References

Hide All
1. Aubry, N., Holmes, P., Lumley, J. L. & Stone, E. 1988 The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192, 115173.
2. Barkley, D. 2006 Linear analysis of the cylinder wake mean flow. Europhys. Lett. 75, 750756.
3. Boltzmann, L. 1877 Über die Beziehung zwischen dem zweiten Hauptsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung, respektive den Sätzen über das Wärmegleichgewicht (translation: On the relationship between the second main theorem of mechanical heat theory and the probability theory, respectively with the theorems about the heat equilibrium). In Sitzungsbericht der Kaiserlichen Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Classe, vol. LXXVI, Abt. II, pp. 373–435.
4. Boussinesq, J. 1877 Essai sur la théorie des eaux courantes. Mémoires présentés par divers savants à l’Académie des Sciences Paris 23 (1), 1680, 24(2), pp. 1–60.
5. Busse, F. H. 1970 Bounds for turbulent shear flow. J. Fluid Mech. 41, 219240.
6. Cheung, S., Oliver, T., Prudencio, E., Prudhomme, S. & Moser, R. 2011 Bayesian uncertainty analysis with applications to turbulence modeling. Reliab. Engng & System Safety 96 (9), 11371149.
7. Craig, N. C. 1988 Entropy analysis of four familiar processes. J. Chem. Ed. 65 (9), 760764.
8. Deane, A. E., Kevrekidis, I. G., Karniadakis, G. E. & Orszag, S. A. 1991 Low-dimensional models for complex geometry flows: Application to grooved channels and circular cylinders. Phys. Fluids A 3, 23372354.
9. Dewar, R. C. 2005 Maximum entropy production and the fluctuation theorem. J. Phys. A: Math. Gen. 38, L371L381.
10. Dewar, R. C. & Porté, A. 2008 Statistical mechanics unifies different ecological patterns. J. Theor. Biol. 251, 389403.
11. Ebeling, W. & Klimontovich, Y. 1984 Selforganization and Turbulence in Liquids, 1st edn. BSB B.G. Teubner Verlagsgesellschaft.
12. Eyink, G. L. & Sreenivasan, K. R. 2006 Onsager and the theory of turbulence. Rev. Mod. Phys. 78, 87135.
13. Farazmand, M. M., Kevlahan, N. K.-R. & Protas, B. 2011 Controlling the dual cascade of two-dimensional turbulence. J. Fluid. Mech. 668, 121.
14. Frisch, U. 1995 Turbulence, 1st edn. Cambridge University Press.
15. Gorban, A. N. & Karlin, I. V. 2005 Invariant Manifolds for Physical and Chemical Kinetics, Lecture Notes in Physics , vol. 660. Springer.
16. Guckenheimer, J. & Holmes, P. 1986 Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields. Springer.
17. Haken, H. 1983 Synergetics, An Introduction. Nonequilibrium Phase Transitions and Self-Organizations in Physics, Chemistry, and Biology, 3rd edn. Springer.
18. Holmes, P., Lumley, J. L. & Berkooz, G. 1998 Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 1st edn. Cambridge University Press.
19. Holmes, P., Lumley, J. L., Berkooz, G. & Rowley, C. W. 2012 Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 2nd edn. Cambridge University Press.
20. Hopf, E. 1951 Statistical hydromechanics and functional analysis. J. Rat. Mech. Anal. 1, 87123.
21. Howard, L. N. 1963 Heat transport by turbulent convection. J. Fluid Mech. 17, 405432.
22. Jaynes, E. T. 1957 Information theory and statistical mechanics. Phys. Rev. 106, 620630.
23. Jaynes, E. T. 1979 Where do we stand on maximum entropy? In The Maximum Entropy Formalism (ed. Levine, R. D. & Tribus, M. ). pp. 1104. MIT.
24. Jaynes, E. T. 2003 Probability Theory. The Logic of Science, 1st edn. Cambridge University Press.
25. Kaneda, Y. & Ishihara, T. 2006 High-resolution direct numerical simulation of turbulence. J. Turbul. 7 (20), 117.
26. Kapur, J. N. & Kevasan, H. K. 1992 Entropy Optimization Principles with Applications, 1st edn. Academic.
27. Kraichnan, R. H. & Chen, S. 1989 Is there a statistical mechanics of turbulence?. Phys. D 37, 160172.
28. Kullback, S. & Leibler, R. A. 1951 On information and sufficiency. Ann. Math. Stat. 22, 7986.
29. Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics, 2nd edn. Course of Theoretical Physics , vol. 6. Pergamon.
30. Launder, B. & Spalding, D. 1972 Lectures in Mathematical Models of Turbulence. Academic.
31. Lee, T. 1952 On some statistical properties of hydrodynamical and magneto-hydrodynamical fields. Quart. Appl. Math. X, 6974.
32. Lesieur, M. 1993 Turbulence in Fluids, 2nd edn. Kluwer.
33. Luchtenburg, D. M., Günter, B., Noack, B. R., King, R. & Tadmor, G. 2009 A generalized mean-field model of the natural and actuated flows around a high-lift configuration. J. Fluid Mech. 623, 283316.
34. Luchtenburg, D. M., Schlegel, M., Noack, B. R., Aleksić, K., King, R., Tadmor, G. & Günther, B. 2010 Turbulence control based on reduced-order models and nonlinear control design. In Active Flow Control II (ed. King, R. ). Notes on Numerical Fluid Mechanics and Multidisciplinary Design , vol. 108. pp. 341356. Springer.
35. Majda, A. & Timofeyev, I. 2000 Remarkable statistical behaviour for truncated Burger–Hopf dynamics. Proc. Natl Acad. Sci USA 97 (23), 1241312417.
36. Malkus, W. 1956 Outline of a theory of turbulent shear flow. J. Fluid Mech. 1, 521539.
37. Manneville, P. 2004 Instabilities, Chaos and Turbulence, 1st edn. Imperial.
38. Maxwell, J. C. 1866 On the viscosity or internal friction of air and other gases. Phil. Trans. R. Soc. Lond. 156, 249268.
39. McComb, D. 1991 The Physics of Fluid Turbulence, 1st edn. Clarendon.
40. Millionshtchikov, M. 1941 On the theory of homogeneous isotropic turbulence. C. R. Acad. Sci. U.S.S.R. 32, 615.
41. Moehlis, J., Smith, T. R., Holmes, P. & Faisst, H. 2002 Models for turbulent plane Couette flow using the proper orthogonal decomposition. Phys. Fluids 14, 24932507.
42. Niven, R. K. 2009a Jaynes’ MaxEnt, steady state flow systems and the maximum entropy production principle. In Bayesian Inference and Maximum Entropy Methods in Science and Engineering: 29th International Workshop, Oxford, MS, 5–10 July 2009 (ed. Goggans, C.-Y. & Chan, P. M. ). pp. 397404. AIP Conference Proceedings, 1193.
43. Niven, R. K. 2009b Steady state of a dissipative flow-controlled system and the maximum entropy production principle. Phys. Rev. E 80, 021113.
44. Niven, R. K. 2010a Minimisation of a free-energy-like potential for non-equilibrium systems at steady state. Phil. Trans. B 365, 13231331.
45. Niven, R. K. 2010b Simultaneous extrema in the entropy production for steady-state fluid flow in parallel pipes. J. Non-Equilib. Thermodyn. 35, 347378.
46. Noack, B. R., Afanasiev, K., Morzyński, M., Tadmor, G. & Thiele, F. 2003 A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335363.
47. Noack, B. R., Morzyński, M. & Tadmor, G. (ed.) 2011 Reduced-Order Modelling for Flow Control, CISM Courses and Lectures , vol. 528. Springer.
48. Noack, B. R., Papas, P. & Monkewitz, P. A. 2005 The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows. J. Fluid Mech. 523, 339365.
49. Noack, B. R., Schlegel, M., Ahlborn, B., Mutschke, G., Morzyński, M., Comte, P. & Tadmor, G. 2008 A finite-time thermodynamics of unsteady fluid flows. J. Non-Equilib. Thermodyn. 33, 103148.
50. Noack, B. R., Schlegel, M., Morzyński, M. & Tadmor, G. 2010 System reduction strategy for Galerkin models of fluid flows. Int. J. Numer. Meth. Fluids 63 (2), 231248.
51. Onsager, L. & Machlup, S. 1953 Fluctuations and irreversible processes. Phys. Rev. 91, 15051515.
52. Ozawa, A., Ohmura, R. D., Lorenz, T. & Pujol, T. 2003 The second law of thermodynamics and the global climate system: A review of the maximum entropy production principle. Rev. Geophys. 41, article 4.
53. Paltridge, G. W. 1975 Global dynamics and climate – a system of minimum entropy exchange. Q. J. R. Meteorol. Soc. 101, 475484.
54. Planck, M. 1932 Introduction to Theoretical Physics, Vol. V: Theory of Heat, 3rd edn. Macmillan.
55. Planck, M. 1945 Treatise on Thermodynamics, 3rd edn. Dover.
56. Podvin, B. 2009 A proper-orthogonal-decomposition based model for the wall layer of a turbulent channel flow. Phys. Fluids 21, 015111.
57. Prandtl, L. 1927 Über die ausgebildete Turbulenz (translation: On developed turbulence). In Verhandlungen des 2. internationalen Kongresses für technische Mechanik, pp. 114. Orell Füßli.
58. Prigogine, I. 1967 Introduction to Thermodynamics of Irreversible Processes, 3rd edn. Interscience Publ.
59. Rempfer, D. 1994 On the structure of dynamical systems describing the evolution of coherent structures in a convective boundary layer. Phys. Fluids 6 (3), 14021404.
60. Rowley, C., Colonius, T. & Murray, R. 2004 Model reduction for compressible flows using POD and Galerkin projection. Phys. D 189, 115129.
61. Rowley, C. W., Mezić, I., Bagheri, S., Schlatter, P. & Henningson, D. 2009 Spectral analysis of nonlinear flows. J. Fluid Mech. 645, 115127.
62. Schewe, G. 1986 Sensitivity of transition phenomena to small perturbations in flow round a circular cylinder. J. Fluid Mech. 172, 3346.
63. Schmid, P. J. 2010 Dynamic mode decomposition for numerical and experimental data. J. Fluid. Mech. 656, 528.
64. Schrödinger, E. 1989 Statistical Thermodynamics, 1st edn. Dover.
65. Sipp, D., Marquet, O., Meliga, P. & Barbagallo, A. 2010 Dynamics and control of global instabilities in open-flows: a linearized approach. Appl. Rev. Mec. 63, 251276.
66. Smagorinsky, J. 1963 General circulation experiments with the primitive equations: I The basic experiment. Mon. Weather Rev. 3, 99165.
67. Sparrow, C. 1982 The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, 1st edn. Applied Mathematical Sciences , vol. 41. Springer.
68. Strong, L. E. & Halliwell, H. F. 1970 An alternative to free energy for undergraduate instruction. J. Chem. Ed. 47 (5), 347352.
69. Stuart, J. 1971 Nonlinear stability theory. Ann. Rev. Fluid Mech. 3, 347370.
70. Tadmor, G., Lehmann, O., Noack, B. R. & Morzyński, M. 2010 Mean field representation of the natural and actuated cylinder wake. Phys. Fluids 22 (3)034102.
71. Tribus, M. 1961 Thermodynamics and Thermostatics: An Introduction to Energy, Information and States of Matter, with Engineering Applications. D. Van Nostrand Company Inc.
72. Watson, J. 1960 On the nonlinear mechanics of wave disturbances in stable and unstable parallel flows. Part 2. The development of a solution for plane Poiseuille flow and for plane Couette flow. J. Fluid Mech. 9, 371389.
73. Williamson, C. 1996 Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477539.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

Maximum-entropy closure for a Galerkin model of an incompressible periodic wake

  • Bernd R. Noack (a1) and Robert K. Niven (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.