1.
Aldridge, K. D., Lumb, L. I. & Henderson, G. A.
1989
A Poincaré model for the earth’s fluid core. Geophys. Astrophys. Fluid Dyn.
48, 5–23.

2.
Bajer, K. & Mizerski, K. A.
2012 Elliptical flow instability triggered by a magnetic field. *Phys. Rev. Lett.* (submitted).

3.
Bender, C. M. & Orszag, S. A.
1978
Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill.

4.
Braginsky, S. I.
1964a
Self excitation of a magnetic field during the motion of a highly conducting fluid. Sov. Phys. JETP
20, 726–735.

5.
Braginsky, S. I.
1964b
Theory of the hydromagnetic dynamo. Sov. Phys. JETP
20, 1462–1471.

6.
Braginsky, S. I.
1975
An almost axially symmetric model of the hydromagnetic dynamo of the earth. Part I. Geomagn. Aeron.
15, 149–156.

7.
Braginsky, S. I.
1976
On the nearly axially-symmetrical model of the hydromagnetic dynamo of the earth. Phys. Earth Planet. Inter.
11, 191–199.

8.
Braginsky, S. I.
1978
An almost axially symmetric model of the hydromagnetic dynamo of the earth. Part II. Geomagn. Aeron.
18, 240–351.

9.
Bushby, P. J. & Proctor, M. R. E.
2010
The influence of -effect fluctuations and the shear-current effect upon the behaviour of solar mean-field dynamo models. Mon. Not. R. Astron. Soc.
409
(4), 1611–1618.
10.
Cambon, C., Benoit, J. P., Shao, L. & Jacquin, L.
1994
Stability analysis and large eddy simulation of rotating turbulence with organized eddies. J. Fluid Mech.
278, 175–200.

11.
Chandrasekhar, S.
1969
Ellipsoidal Figures of Equilibrium. Yale University Press.

12.
Courvoisier, A., Hughes, D. W. & Tobias, S. M.
2006
-effect in a family of chaotic flows. Phys. Rev. Lett.
96, 034503.
13.
Craik, A. D. D. & Criminale, W. O.
1986
Evolution of wavelike disturbances in shear flows: a class of exact solutions of the Navier–Stokes equations. Proc. R. Soc. A
406
(1830), 13–26.

14.
Gilbert, A.
2003
Dynamo theory. In Handbook of Mathematical Fluid Dynamics (ed.
Friedlander, S. & Serre, D.
), vol. 2, pp. 355–441. Elsevier.

15.
Hawley, J. F., Gammie, C. F. & Balbus, S. A.
1995
Local three-dimensional magnetohydrodynamic simulations of accretion disks. Astrophys. J.
440, 742–763.

16.
Kerswell, R. R.
1993
The instability of precessing flow. Geophys. Astrophys. Fluid Dyn.
72
(1), 107–144.

17.
Kerswell, R. R.
1994
Tidal excitation of hydromagnetic waves and their damping in the earth. J. Fluid Mech.
274, 219–241.

18.
Kerswell, R. R. & Malkus, W. V. R.
1998
Tidal instability as the source for Io’s magnetic signature. Geophys. Res. Lett.
25
(5), 603–606.

19.
Lacaze, L., Le Gal, P. & Le Dizès, S.
2004
Elliptical instability in a rotating spheroid. J. Fluid Mech.
505, 1–22.

20.
Lacaze, L., Le Gal, P. & Le Dizès, S.
2005
Elliptical instability of the flow in a rotating shell. Phys. Earth Planet. Inter.
151
(3/4), 194–205.

21.
Lacaze, L., Herreman, W., Le Bars, M., Le Dizès, S. & Le Gal, P.
2006
Magnetic field induced by elliptical instability in a rotating spheroid. Geophys. Astrophys. Fluid Dyn.
100
(4/5), 299–317.

22.
Landman, M. J. & Saffman, P. G.
1987
The three-dimensional instability of strained vortices in a viscous fluid. Phys. Fluids
30
(8), 2339–2342.

23.
Leblanc, S. & Cambon, C.
1997
On the three-dimensional instabilities of plane flows subjected to Coriolis force. Phys. Fluids
9
(5), 1307–1316.

24.
Leblanc, S.
1997
Stability of stagnation points in rotating flows. Phys. Fluids
9
(11), 3566–3569.

25.
Lebovitz, N. R. & Lifschitz, A.
1996
Short wavelength instabilities of Riemann ellipsoids. Phil. Trans. R. Soc. Lond. A
354, 927–950.

26.
Lebovitz, N. R. & Zweibel, E.
2004
Magnetoelliptic instabilities. Astrophys. J.
609, 301–312.

27.
Le Gal, P., Lacaze, L. & Le Dizès, S.
2005
Magnetic field induced by elliptical instability in a rotating tidally-distorted sphere. J. Phys. Conf. Ser.
14, 30–34.

28.
Lesur, G. & Papaloizou, J. C. B.
2009
On the stability of elliptical vortices in accretion discs. Astron. Astrophys.
498, 1–12.

29.
Malkus, W. V. R.
1968
Precession of the earth as the cause of geomagnetism: experiments lend support to the proposal that precessional torques drive the earth’s dynamo. Science
160
(3825), 259–264.

30.
Malkus, W. V. R.
1989
An experimental study of global instabilities due to the tidal (elliptical) distortion of a rotating elastic cylinder. Geophys. Astrophys. Fluid Dyn.
48
(1), 123–134.

31.
Mizerski, K. A. & Bajer, K.
2009
The magnetoelliptic instability of rotating systems. J. Fluid Mech.
632
(1), 401–430.

32.
Mizerski, K. A. & Bajer, K.
2011
The influence of magnetic field on short-wavelength instability of Riemann ellipsoids. Physica D
240, 1629–1635.

33.
Moffatt, H. K.
1970
Dynamo action associated with random inertial waves in a rotating conducting fluid. J. Fluid Mech.
44, 705–719, available at http://moffatt.tc.

34.
Moffatt, H. K.
1974
The mean electromotive force generated by turbulence in the limit of perfect conductivity. J. Fluid Mech.
65, 1–10, available at http://moffatt.tc.

35.
Moffatt, H. K.
1976
Generation of magnetic fields by fluid motion. Adv. Appl. Mech.
16, 119–181, available at http://moffatt.tc.

36.
Moffatt, H. K.
1978
Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press, available at http://moffatt.tc.

37.
Moffatt, H. K.
1983
Induction in turbulent conductors. In Stellar and Planetary Magnetism (ed.
Soward, A. M.
). pp. 3–16. Gordon and Breach, available at http://moffatt.tc.

38.
Noir, J., Brito, D., Aldridge, K. & Cardin, P.
2001
Experimental evidence of inertial waves in a precessing spheroidal cavity. Geophys. Res. Lett.
28
(19), 3785–3788.

39.
Proctor, M. R. E.
2007
Effects of fluctuation on alpha–omega dynamo models. Mon. Not. R. Astron. Soc.
382
(1), L39–L42.

40.
Rädler, K. H. & Brandenburg, A.
2009
Mean-field effects in the Galloway–Proctor flow. Mon. Not. R. Astron. Soc.
393
(1), 113–125.

41.
Richardson, K. J. & Proctor, M. R. E.
2010
Effects of -effect fluctuations on simple nonlinear dynamo models. Geophys. Astrophys. Fluid Dyn.
104
(5), 601–618.
42.
Roberts, G. O.
1972
Dynamo action of fluid motions with two-dimensional periodicity. Phil. Trans. R. Soc. A
271
(1216), 411–454.

43.
Rüdiger, G. O. & Hollerbach, R.
2004
The Magnetic Universe: Geophysical and Astrophysical Dynamo Theory. Wiley.

44.
Seehafer, N.
1995
The turbulent electromotive force in the high-conductivity limit. Astron. Astrophys.
301, 290–292.

45.
Soward, A. M.
1972
A kinematic theory of large magnetic Reynolds number dynamos. Phil. Trans. R. Soc. A
272
(1227), 431–462.

46.
Suess, S. T.
1970
Some effects of gravitational tides on a model earth’s core. J. Geophys. Res.
75, 6650–6661.

47.
Tilgner, A.
2005
Precession driven dynamos. Phys. Fluids
17, 034104.

48.
Vanyo, J., Wilde, P., Cardin, P. & Olson, P.
1995
Experiments on precessing flows in the Earth’s liquid core. Geophys. J. Intl
121
(1), 136–142.

49.
Wienbruch, U. & Spohn, T.
1995
A self sustained magnetic field on Io?. Planet. Space Sci.
43
(9), 1045–1057.