Skip to main content
×
×
Home

Micro-bubble morphologies following drop impacts onto a pool surface

  • S. T. Thoroddsen (a1), M.-J. Thoraval (a1), K. Takehara (a2) and T. G. Etoh (a2)
Abstract

When a drop impacts at low velocity onto a pool surface, a hemispheric air layer cushions and can delay direct contact. Herein we use ultra-high-speed video to study the rupture of this layer, to explain the resulting variety of observed distribution of bubbles. The size and distribution of micro-bubbles is determined by the number and location of the primary punctures. Isolated holes lead to the formation of bubble necklaces when the edges of two growing holes meet, whereas bubble nets are produced by regular shedding of micro-bubbles from a sawtooth edge instability. For the most viscous liquids the air film contracts more rapidly than the capillary–viscous velocity through repeated spontaneous ruptures of the edge. From the speed of hole opening and the total volume of micro-bubbles we conclude that the air sheet ruptures when its thickness approaches .

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Micro-bubble morphologies following drop impacts onto a pool surface
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Micro-bubble morphologies following drop impacts onto a pool surface
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Micro-bubble morphologies following drop impacts onto a pool surface
      Available formats
      ×
Copyright
The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike licence . The written permission of Cambridge University Press must be obtained for commercial re-use.
Corresponding author
Email address for correspondence: sigurdur.thoroddsen@kaust.edu.sa
References
Hide All
1. Aryafar, H. & Kavehpour, H. P. 2008 Hydrodynamic instabilities of viscous coalescing droplets. Phys. Rev. E 78 (3), 037302.
2. Bagué, A., Zaleski, S. & Josserand, C. 2007 Droplet formation at the edge of a liquid sheet. In 6th International Conference on Multiphase Flow (ICMF2007) (ed. Sommerfeld, M. & Tropea, C. ). ICMF.
3. Bartolo, D., Josserand, C. & Bonn, D. 2006 Singular jets and bubbles in drop impact. Phys. Rev. Lett. 96 (12), 124501.
4. Brenner, M. P. & Gueyffier, D. 1999 On the bursting of viscous films. Phys. Fluids 11 (3), 737739.
5. Chan, D. Y. C., Klaseboer, E. & Manica, R. 2011 Film drainage and coalescence between deformable drops and bubbles. Soft Matt. 7 (6), 22352264.
6. Couder, Y., Fort, E., Gautier, C.-H. & Boudaoud, A. 2005 From bouncing to floating: noncoalescence of drops on a fluid bath. Phys. Rev. Lett. 94 (17), 177801.
7. Czerski, H., Twardowski, M., Zhang, X. & Vagle, S. 2011 Resolving size distributions of bubbles with radii less than with optical and acoustical methods. J. Geophys. Res. 116, C00H11.
8. Debrégeas, G., Martin, P. & Brochard-Wyart, F. 1995 Viscous bursting of suspended films. Phys. Rev. Lett. 75 (21), 38863889.
9. Dhir, V. K. 1998 Boiling heat transfer. Annu. Rev. Fluid Mech. 30, 365401.
10. Dorbolo, S., Reyssat, E., Vandewalle, N. & Quéré, D. 2005 Aging of an antibubble. Europhys. Lett. 69 (6), 966970.
11. Esmailizadeh, L. & Mesler, R. 1986 Bubble entrainment with drops. J. Colloid Interface Sci. 110 (2), 561574.
12. Etoh, T. G., Poggemann, D., Kreider, G., Mutoh, H., Theuwissen, A. J. P., Ruckelshausen, A., Kondo, Y., Maruno, H., Takubo, K., Soya, H., Takehara, K., Okinaka, T. & Takano, Y. 2003 An image sensor which captures 100 consecutive frames at 1000000 frames/s. IEEE Trans. Electron. Devices 50 (1), 144151.
13. de Gennes, P.-G., Brochard-Wyart, F. & Quéré, D. 2004 Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer.
14. Gordillo, L., Agbaglah, G., Duchemin, L. & Josserand, C. 2011 Asymptotic behaviour of a retracting two-dimensional fluid sheet. Phys. Fluids 23 (12), 122101.
15. Israelachvili, J. N. 2011 Intermolecular and Surface Forces, third edition, pp. 253289. Elsevier.
16. Lhuissier, H. & Villermaux, E. 2011 The destabilization of an initially thick liquid sheet edge. Phys. Fluids 23 (9), 091705.
17. Liow, J.-L. & Cole, D. E. 2007 Bubble entrapment mechanisms during the impact of a water drop. In 16th Australasian Fluid Mechanics Conference, Gold Coast, Australia, pp. 866–869. University of Queensland.
18. Mills, B. H., Saylor, J. R. & Testik, F. Y. 2012 An experimental study of Mesler entrainment on a surfactant-covered interface: the effect of drop shape and Weber number. AIChE J. 58 (1), 4658.
19. Neitzel, G. P. & Dell’Aversana, P. 2002 Noncoalescence and nonwetting behaviour of liquids. Annu. Rev. Fluid. Mech. 34, 267289.
20. Oguz, H. N. & Prosperetti, A. 1989 Surface-tension effects in the contact of liquid surfaces. J. Fluid. Mech. 203, 149171.
21. Reiter, G. & Sharma, A. 2001 Auto-optimization of dewetting rates by rim instabilities in slipping polymer films. Phys. Rev. Lett. 87 (16), 166103.
22. Reyssat, É. & Quéré, D. 2006 Bursting of a fluid film in a viscous environment. Europhys. Lett. 76 (2), 236242.
23. Saylor, J. R. & Bounds, G. D. 2012 Experimental study of the role of the Weber and capillary numbers on Mesler entrainment. AIChE J. doi:10.1002/aic.13764.
24. Sigler, J. & Mesler, R. 1990 The behaviour of the gas film formed upon drop impact with a liquid surface. J. Colloid Interface Sci. 134 (2), 459474.
25. Song, M. & Tryggvason, G. 1999 The formation of thick borders on an initially stationary fluid sheet. Phys. Fluids 11 (9), 24872493.
26. Thoroddsen, S. T., Etoh, T. G. & Takehara, K. 2003 Air entrapment under an impacting drop. J. Fluid Mech. 478, 125134.
27. Thoroddsen, S. T., Etoh, T. G. & Takehara, K. 2007 Microjetting from wave focusing on oscillating drops. Phys. Fluids 19 (5), 052101.
28. van der Veen, R. C. A., Tran, T., Lohse, D. & Sun, C. 2012 Direct measurements of air layer profiles under impacting droplets using high-speed colour interferometry. Phys. Rev. E 85 (2), 026315.
29. Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C. & McGillis, W. R. 2009 Advances in quantifying air–sea gas exchange and environmental forcing. Ann. Rev. Mar. Sci. 1, 213244.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Type Description Title
VIDEO
Movies

Thoroddsen supplementary material
frame rate: 125,000; width: 1.29 mm.

 Video (784 KB)
784 KB
VIDEO
Movies

Thoroddsen supplementary material
frame rate: 62,500; width: 3.69 mm.

 Video (685 KB)
685 KB
VIDEO
Movies

Thoroddsen supplementary material
frame rate: 31,250; width: 2.96 mm.

 Video (677 KB)
677 KB
VIDEO
Movies

Thoroddsen supplementary material
frame rate: 31,250; width: 3.72 mm.

 Video (707 KB)
707 KB
VIDEO
Movies

Thoroddsen supplementary material
frame rate: 125,000; width: 1.29 mm.

 Video (148 KB)
148 KB
VIDEO
Movies

Thoroddsen supplementary material
frame rate: 125,000; width: 1.51 mm.

 Video (436 KB)
436 KB
VIDEO
Movies

Thoroddsen supplementary material
frame rate: 62,500; width: 0.66 mm.

 Video (285 KB)
285 KB
VIDEO
Movies

Thoroddsen supplementary material
frame rate: 62,500; width: 3.69 mm.

 Video (134 KB)
134 KB
VIDEO
Movies

Thoroddsen supplementary material
frame rate: 62,500; width: 0.66 mm.

 Video (177 KB)
177 KB
VIDEO
Movies

Thoroddsen supplementary material
frame rate: 31,250; width: 3.72 mm.

 Video (143 KB)
143 KB
VIDEO
Movies

Thoroddsen supplementary material
frame rate: 62,500; width: 2.91 mm.

 Video (710 KB)
710 KB
VIDEO
Movies

Thoroddsen supplementary material
frame rate: 125,000; width: 1.51 mm.

 Video (82 KB)
82 KB
VIDEO
Movies

Thoroddsen supplementary material
frame rate: 62,500; width: 1.53 mm

 Video (192 KB)
192 KB
VIDEO
Movies

Thoroddsen supplementary material
frame rate: 62,500; width: 2.91 mm.

 Video (178 KB)
178 KB
VIDEO
Movies

Thoroddsen supplementary material
frame rate: 62,500; width: 2.95 mm.

 Video (41 KB)
41 KB
VIDEO
Movies

Thoroddsen supplementary material
frame rate: 15,625; width: 2.89 mm.

 Video (135 KB)
135 KB
VIDEO
Movies

Thoroddsen supplementary material
frame rate: 125,000; width: 1.29 mm.

 Video (152 KB)
152 KB
VIDEO
Movies

Thoroddsen supplementary material
frame rate: 15,625; width: 2.89 mm.

 Video (620 KB)
620 KB
VIDEO
Movies

Thoroddsen supplementary material
frame rate: 62,500; width: 0.66 mm.

 Video (71 KB)
71 KB
VIDEO
Movies

Thoroddsen supplementary material
frame rate: 62,500; width: 1.53 mm

 Video (775 KB)
775 KB
VIDEO
Movies

Thoroddsen supplementary material
frame rate: 125,000; width: 1.29 mm.

 Video (827 KB)
827 KB
VIDEO
Movies

Thoroddsen supplementary material
frame rate: 62,500; width: 2.95 mm.

 Video (275 KB)
275 KB
VIDEO
Movies

Thoroddsen supplementary material
frame rate: 62,500; width: 0.66 mm.

 Video (41 KB)
41 KB
VIDEO
Movies

Thoroddsen supplementary material
frame rate: 31,250; width: 2.35 mm.

 Video (798 KB)
798 KB
VIDEO
Movies

Thoroddsen supplementary material
frame rate: 31,250; width: 2.35 mm.

 Video (172 KB)
172 KB
VIDEO
Movies

Thoroddsen supplementary material
frame rate: 31,250; width: 2.96 mm.

 Video (220 KB)
220 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed