Skip to main content Accessibility help
×
Home
Hostname: page-component-65dc7cd545-spssh Total loading time: 0.327 Render date: 2021-07-24T06:09:07.908Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Micro-bubble morphologies following drop impacts onto a pool surface

Published online by Cambridge University Press:  14 August 2012

S. T. Thoroddsen
Affiliation:
Division of Physical Sciences and Engineering and Clean Combustion Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
M.-J. Thoraval
Affiliation:
Division of Physical Sciences and Engineering and Clean Combustion Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
K. Takehara
Affiliation:
Department of Civil and Environmental Engineering, Kinki University, Higashi-Osaka 577-8502, Japan
T. G. Etoh
Affiliation:
Department of Civil and Environmental Engineering, Kinki University, Higashi-Osaka 577-8502, Japan
Corresponding
Rights & Permissions[Opens in a new window]

Abstract

When a drop impacts at low velocity onto a pool surface, a hemispheric air layer cushions and can delay direct contact. Herein we use ultra-high-speed video to study the rupture of this layer, to explain the resulting variety of observed distribution of bubbles. The size and distribution of micro-bubbles is determined by the number and location of the primary punctures. Isolated holes lead to the formation of bubble necklaces when the edges of two growing holes meet, whereas bubble nets are produced by regular shedding of micro-bubbles from a sawtooth edge instability. For the most viscous liquids the air film contracts more rapidly than the capillary–viscous velocity through repeated spontaneous ruptures of the edge. From the speed of hole opening and the total volume of micro-bubbles we conclude that the air sheet ruptures when its thickness approaches .

Type
Papers
Copyright
Copyright © Cambridge University Press 2012 The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike licence <http://creativecommons.org/licenses/by-nc-sa/2.5/>. The written permission of Cambridge University Press must be obtained for commercial re-use.

References

1. Aryafar, H. & Kavehpour, H. P. 2008 Hydrodynamic instabilities of viscous coalescing droplets. Phys. Rev. E 78 (3), 037302.CrossRefGoogle ScholarPubMed
2. Bagué, A., Zaleski, S. & Josserand, C. 2007 Droplet formation at the edge of a liquid sheet. In 6th International Conference on Multiphase Flow (ICMF2007) (ed. Sommerfeld, M. & Tropea, C. ). ICMF.Google Scholar
3. Bartolo, D., Josserand, C. & Bonn, D. 2006 Singular jets and bubbles in drop impact. Phys. Rev. Lett. 96 (12), 124501.CrossRefGoogle ScholarPubMed
4. Brenner, M. P. & Gueyffier, D. 1999 On the bursting of viscous films. Phys. Fluids 11 (3), 737739.CrossRefGoogle Scholar
5. Chan, D. Y. C., Klaseboer, E. & Manica, R. 2011 Film drainage and coalescence between deformable drops and bubbles. Soft Matt. 7 (6), 22352264.CrossRefGoogle Scholar
6. Couder, Y., Fort, E., Gautier, C.-H. & Boudaoud, A. 2005 From bouncing to floating: noncoalescence of drops on a fluid bath. Phys. Rev. Lett. 94 (17), 177801.CrossRefGoogle ScholarPubMed
7. Czerski, H., Twardowski, M., Zhang, X. & Vagle, S. 2011 Resolving size distributions of bubbles with radii less than with optical and acoustical methods. J. Geophys. Res. 116, C00H11.CrossRefGoogle Scholar
8. Debrégeas, G., Martin, P. & Brochard-Wyart, F. 1995 Viscous bursting of suspended films. Phys. Rev. Lett. 75 (21), 38863889.CrossRefGoogle ScholarPubMed
9. Dhir, V. K. 1998 Boiling heat transfer. Annu. Rev. Fluid Mech. 30, 365401.CrossRefGoogle Scholar
10. Dorbolo, S., Reyssat, E., Vandewalle, N. & Quéré, D. 2005 Aging of an antibubble. Europhys. Lett. 69 (6), 966970.CrossRefGoogle Scholar
11. Esmailizadeh, L. & Mesler, R. 1986 Bubble entrainment with drops. J. Colloid Interface Sci. 110 (2), 561574.CrossRefGoogle Scholar
12. Etoh, T. G., Poggemann, D., Kreider, G., Mutoh, H., Theuwissen, A. J. P., Ruckelshausen, A., Kondo, Y., Maruno, H., Takubo, K., Soya, H., Takehara, K., Okinaka, T. & Takano, Y. 2003 An image sensor which captures 100 consecutive frames at 1000000 frames/s. IEEE Trans. Electron. Devices 50 (1), 144151.CrossRefGoogle Scholar
13. de Gennes, P.-G., Brochard-Wyart, F. & Quéré, D. 2004 Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer.CrossRefGoogle Scholar
14. Gordillo, L., Agbaglah, G., Duchemin, L. & Josserand, C. 2011 Asymptotic behaviour of a retracting two-dimensional fluid sheet. Phys. Fluids 23 (12), 122101.CrossRefGoogle Scholar
15. Israelachvili, J. N. 2011 Intermolecular and Surface Forces, third edition, pp. 253289. Elsevier.Google Scholar
16. Lhuissier, H. & Villermaux, E. 2011 The destabilization of an initially thick liquid sheet edge. Phys. Fluids 23 (9), 091705.CrossRefGoogle Scholar
17. Liow, J.-L. & Cole, D. E. 2007 Bubble entrapment mechanisms during the impact of a water drop. In 16th Australasian Fluid Mechanics Conference, Gold Coast, Australia, pp. 866–869. University of Queensland.Google Scholar
18. Mills, B. H., Saylor, J. R. & Testik, F. Y. 2012 An experimental study of Mesler entrainment on a surfactant-covered interface: the effect of drop shape and Weber number. AIChE J. 58 (1), 4658.CrossRefGoogle Scholar
19. Neitzel, G. P. & Dell’Aversana, P. 2002 Noncoalescence and nonwetting behaviour of liquids. Annu. Rev. Fluid. Mech. 34, 267289.CrossRefGoogle Scholar
20. Oguz, H. N. & Prosperetti, A. 1989 Surface-tension effects in the contact of liquid surfaces. J. Fluid. Mech. 203, 149171.CrossRefGoogle Scholar
21. Reiter, G. & Sharma, A. 2001 Auto-optimization of dewetting rates by rim instabilities in slipping polymer films. Phys. Rev. Lett. 87 (16), 166103.CrossRefGoogle ScholarPubMed
22. Reyssat, É. & Quéré, D. 2006 Bursting of a fluid film in a viscous environment. Europhys. Lett. 76 (2), 236242.CrossRefGoogle Scholar
23. Saylor, J. R. & Bounds, G. D. 2012 Experimental study of the role of the Weber and capillary numbers on Mesler entrainment. AIChE J. doi:10.1002/aic.13764.CrossRefGoogle Scholar
24. Sigler, J. & Mesler, R. 1990 The behaviour of the gas film formed upon drop impact with a liquid surface. J. Colloid Interface Sci. 134 (2), 459474.CrossRefGoogle Scholar
25. Song, M. & Tryggvason, G. 1999 The formation of thick borders on an initially stationary fluid sheet. Phys. Fluids 11 (9), 24872493.CrossRefGoogle Scholar
26. Thoroddsen, S. T., Etoh, T. G. & Takehara, K. 2003 Air entrapment under an impacting drop. J. Fluid Mech. 478, 125134.CrossRefGoogle Scholar
27. Thoroddsen, S. T., Etoh, T. G. & Takehara, K. 2007 Microjetting from wave focusing on oscillating drops. Phys. Fluids 19 (5), 052101.CrossRefGoogle Scholar
28. van der Veen, R. C. A., Tran, T., Lohse, D. & Sun, C. 2012 Direct measurements of air layer profiles under impacting droplets using high-speed colour interferometry. Phys. Rev. E 85 (2), 026315.CrossRefGoogle ScholarPubMed
29. Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C. & McGillis, W. R. 2009 Advances in quantifying air–sea gas exchange and environmental forcing. Ann. Rev. Mar. Sci. 1, 213244.CrossRefGoogle ScholarPubMed

Thoroddsen supplementary material

frame rate: 62,500; width: 2.91 mm.

Download Thoroddsen supplementary material(Video)
Video 710 KB

Thoroddsen supplementary material

frame rate: 62,500; width: 2.91 mm.

Download Thoroddsen supplementary material(Video)
Video 178 KB

Thoroddsen supplementary material

frame rate: 62,500; width: 2.95 mm.

Download Thoroddsen supplementary material(Video)
Video 275 KB

Thoroddsen supplementary material

frame rate: 62,500; width: 2.95 mm.

Download Thoroddsen supplementary material(Video)
Video 41 KB

Thoroddsen supplementary material

frame rate: 31,250; width: 3.72 mm.

Download Thoroddsen supplementary material(Video)
Video 707 KB

Thoroddsen supplementary material

frame rate: 31,250; width: 3.72 mm.

Download Thoroddsen supplementary material(Video)
Video 143 KB

Thoroddsen supplementary material

frame rate: 31,250; width: 2.96 mm.

Download Thoroddsen supplementary material(Video)
Video 677 KB

Thoroddsen supplementary material

frame rate: 31,250; width: 2.96 mm.

Download Thoroddsen supplementary material(Video)
Video 220 KB

Thoroddsen supplementary material

frame rate: 125,000; width: 1.51 mm.

Download Thoroddsen supplementary material(Video)
Video 436 KB

Thoroddsen supplementary material

frame rate: 125,000; width: 1.51 mm.

Download Thoroddsen supplementary material(Video)
Video 82 KB

Thoroddsen supplementary material

frame rate: 125,000; width: 1.29 mm.

Download Thoroddsen supplementary material(Video)
Video 784 KB

Thoroddsen supplementary material

frame rate: 125,000; width: 1.29 mm.

Download Thoroddsen supplementary material(Video)
Video 152 KB

Thoroddsen supplementary material

frame rate: 62,500; width: 0.66 mm.

Download Thoroddsen supplementary material(Video)
Video 177 KB

Thoroddsen supplementary material

frame rate: 62,500; width: 0.66 mm.

Download Thoroddsen supplementary material(Video)
Video 41 KB

Thoroddsen supplementary material

frame rate: 62,500; width: 0.66 mm.

Download Thoroddsen supplementary material(Video)
Video 285 KB

Thoroddsen supplementary material

frame rate: 62,500; width: 0.66 mm.

Download Thoroddsen supplementary material(Video)
Video 71 KB

Thoroddsen supplementary material

frame rate: 31,250; width: 2.35 mm.

Download Thoroddsen supplementary material(Video)
Video 798 KB

Thoroddsen supplementary material

frame rate: 31,250; width: 2.35 mm.

Download Thoroddsen supplementary material(Video)
Video 172 KB

Thoroddsen supplementary material

frame rate: 62,500; width: 1.53 mm

Download Thoroddsen supplementary material(Video)
Video 775 KB

Thoroddsen supplementary material

frame rate: 62,500; width: 1.53 mm

Download Thoroddsen supplementary material(Video)
Video 192 KB

Thoroddsen supplementary material

frame rate: 62,500; width: 3.69 mm.

Download Thoroddsen supplementary material(Video)
Video 685 KB

Thoroddsen supplementary material

frame rate: 62,500; width: 3.69 mm.

Download Thoroddsen supplementary material(Video)
Video 134 KB

Thoroddsen supplementary material

frame rate: 125,000; width: 1.29 mm.

Download Thoroddsen supplementary material(Video)
Video 827 KB

Thoroddsen supplementary material

frame rate: 125,000; width: 1.29 mm.

Download Thoroddsen supplementary material(Video)
Video 148 KB

Thoroddsen supplementary material

frame rate: 15,625; width: 2.89 mm.

Download Thoroddsen supplementary material(Video)
Video 620 KB

Thoroddsen supplementary material

frame rate: 15,625; width: 2.89 mm.

Download Thoroddsen supplementary material(Video)
Video 135 KB
You have Access
Open access
55
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Micro-bubble morphologies following drop impacts onto a pool surface
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Micro-bubble morphologies following drop impacts onto a pool surface
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Micro-bubble morphologies following drop impacts onto a pool surface
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *