Abdessemed, N., Sherwin, S. J. & Theofilis, V.
2009
Linear instability analysis of low-pressure turbine flows. J. Fluid Mech.
628, 57–83.

Alam, M. M., Zhou, Y., Yang, H. X., Guo, H. & Mi, J.
2010
The ultra-low Reynolds number airfoil wake. Exp. Fluids
48 (1), 81–103.

Anand, K. & Sarkar, S.
2017
Features of a laminar separated boundary layer near the leading-edge of a model airfoil for different angles of attack: an experimental study. Trans. ASME J. Fluids Engng
139 (2), 021201.

Anyoji, M., Nonomura, T., Aono, H., Oyama, A., Fujii, K., Nagai, H. & Asai, K.
2014
Computational and experimental analysis of a high-performance airfoil under low-Reynolds-number flow condition. J. Aircraft
51 (6), 1864–1872.

Barba, L. A., Leonard, A. & Allen, C. B.2003 Numerical investigations on the accuracy of the vortex method with and without remeshing. *AIAA Paper* 2003-3426.

Benson, M. G., Bellamy-Knights, P. G., Gerrard, J. H. & Gladwell, I.
1989
A viscous splitting algorithm applied to low Reynolds number flows round a circular cylinder. J. Fluids Struct.
3 (5), 439–479.

Berger, M., Aftosmis, M. J. & Allmaras, S.2012 Progress towards a cartesian cut-cell method for viscous compressible flow. *AIAA Paper* 2012-1301.

Bigay, P., Oger, G., Guilcher, P.-M. & Touzé, D. L.
2017
A weakly-compressible Cartesian grid approach for hydrodynamic flows. Comput. Phys. Commun.
220 (Supplement C), 31–43.

Chatelain, P., Curioni, A., Bergdorf, M., Rossinelli, D., Andreoni, W. & Koumoutsakos, P.
2008
Billion vortex particle direct numerical simulations of aircraft wakes. Comput. Meth. Appl. Mech. Engng
197 (13), 1296–1304.

Chorin, A.
1973
Numerical study of slightly viscous flow. J. Fluid Mech.
57 (04), 785–796.

Chorin, A.
1978
Vortex sheet approximation of boundary layers. J. Comput. Phys.
27 (3), 428–442.

Colagrossi, A., Bouscasse, B., Antuono, M. & Marrone, S.
2012
Particle packing algorithm for SPH schemes. Comput. Phys. Commun.
183 (2), 1641–1683.

Colagrossi, A., Graziani, G. & Pulvirenti, M.
2014
Particles for fluids: SPH versus vortex methods. J. Math. Mech. Complex Syst.
2 (1), 45–70.

Colagrossi, A., Rossi, E., Marrone, S. & Le Touzé, D.
2016
Particle methods for viscous flows: analogies and differences between the SPH and DVH methods. Commun. Comput. Phys.
20 (3), 660–688.

Counsil, J. N. & Goni Boulama, K.
2013
Low-Reynolds-number aerodynamic performances of the NACA 0012 and Selig–Donovan 7003 airfoils. J. Aircraft
50 (1), 204–216.

Durante, D., Rossi, E., Colagrossi, A. & Graziani, G.
2016
Numerical simulations of the transition from laminar to chaotic behaviour of the planar vortex flow past a circular cylinder. Commun. Nonlinear Sci. Numer. Simul.
48, 18–38.

Galbraith, M. C. & Visbal, M. R.2009 Implicit large eddy simulation of low-Reynolds-number transitional flow past the sd7003 airfoil. PhD thesis, University of Cincinnati.

Gioria, R. S., He, W. & Theofilis, V.
2015
On global linear instability mechanisms of flow around airfoils at low Reynolds number and high angle of attack. Procedia IUTAM
14, 88–95.

He, W., Gioria, R. S., Pérez, J. M. & Theofilis, V.
2017
Linear instability of low Reynolds number massively separated flow around three NACA airfoils. J. Fluid Mech.
811, 701–741.

Hoarau, Y., Braza, M., Ventikos, Y. & Faghani, D.
2006
First stages of the transition to turbulence and control in the incompressible detached flow around a NACA0012 wing. Intl J. Heat Fluid Flow
27 (5), 878–886.

Hoarau, Y., Braza, M., Ventikos, Y., Faghani, D. & Tzabiras, G.
2003
Organized modes and the three-dimensional transition to turbulence in the incompressible flow around a NACA0012 wing. J. Fluid Mech.
496, 63–72.

Hu, H. & Yang, Z.
2008
An experimental study of the laminar flow separation on a low-Reynolds-number airfoil. Trans. ASME J. Fluids Engng
130 (5), 051101.

Huang, R. F. & Lin, C. L.
1995
Vortex shedding and shear-layer instability of wing at low-Reynolds numbers. AIAA J.
33 (8), 1398–1403.

Huang, R. F., Wu, J. Y., Jeng, J. H. & Chen, R. C.
2001
Surface flow and vortex shedding of an impulsively started wing. J. Fluid Mech.
441, 265–292.

Jung, J., Yee, K., Misaka, T. & Jeong, S.
2017
Low Reynolds number airfoil design for a mars exploration airplane using a transition model. Trans. Japan Soc. Aeronaut. Space Sci.
60 (6), 333–340.

Khalid, M. S. U. & Akhtar, I.
2012
Characteristics of flow past a symmetric airfoil at low Reynolds number: a nonlinear perspective. In ASME 2012 International Mechanical Engineering Congress & Exposition, pp. 167–175. American Society of Mechanical Engineers.

Kojima, R., Nonomura, T., Oyama, A. & Fujii, K.
2013
Large-eddy simulation of low-Reynolds-number flow over thick and thin NACA airfoils. J. Aircraft
50 (1), 187–196.

Kunz, P. & Kroo, I.2000 Analysis, design, and testing of airfoils for use at ultra-low Reynolds numbers. *Conference Paper, Conference on Fixed and Flapping Flight at Low Reynolds Numbers*, 5–7 June, University of Notre Dame, IN, pp. 349–372.

Kurtulus, D. F.
2015
On the unsteady behavior of the flow around NACA 0012 airfoil with steady external conditions at ℜ = 1000. Intl J. Micro Air Vehicles
7 (3), 301–326.

Kurtulus, D. F.
2016
On the wake pattern of symmetric airfoils for different incidence angles at ℜ = 1000. Intl J. Micro Air Vehicles
8 (2), 109–139.

Lee, D., Nonomura, T., Oyama, A. & Fujii, K.
2015
Validation of numerical analysis to estimate airfoil aerodynamic characteristics at low Reynolds number region. In ASME/JSME/KSME 2015 Joint Fluids Engineering Conference, pp. V01AT13A005–V01AT13A005. American Society of Mechanical Engineers.

Lee, D., Nonomura, T., Oyama, A. & Fujii, K.
2017
Comparative studies of numerical methods for evaluating aerodynamic characteristics of two-dimensional airfoil at low Reynolds numbers. Intl J. Comput. Fluid Dyn.
31 (1), 57–67.

Lissaman, P. B. S.
1983
Low-Reynolds-number airfoils. Annu. Rev. Fluid Mech.
15 (1), 223–239.

Liu, Y., Li, K., Zhang, J., Wang, H. & Liu, L.
2012
Numerical bifurcation analysis of static stall of airfoil and dynamic stall under unsteady perturbation. Commun. Nonlinear Sci. Numer. Simul.
17 (8), 3427–3434.

Liu, X.-D., Osher, S. & Chan, T.
1994
Weighted essentially non-oscillatory schemes iii. J. Comput. Phys.
115, 200–212.

Mateescu, D. & Abdo, M.
2010
Analysis of flows past airfoils at very low Reynolds numbers. Proc. Inst. Mech. Engrs
224 (7), 757–775.

Mesnard, O. & Barba, L. A.2016 Reproducible and replicable CFD: it’s harder than you think. Preprint, arXiv:1605.04339.
Mueller, T. J. & Delaurier, J. D.
2003
Aerodynamics of small vehicles. Annu. Rev. Fluid Mech.
35 (1), 89–111.

Oger, G., Marrone, S., Touzé, D. L. & de Leffe, M.
2016
SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms. J. Comput. Phys.
313, 76–98.

Pulliam, T. H. & Vastano, J. A.
1993
Transition to chaos in an open unforced 2D flow. J. Comput. Phys.
105 (1), 133–149.

Rodríguez, D. & Theofilis, V.
2011
On the birth of stall cells on airfoils. Theor. Comput. Fluid Dyn.
25 (1), 105–117.

Rossi, E., Colagrossi, A., Bouscasse, B. & Graziani, G.
2015a
The diffused vortex hydrodynamics method. Commun. Comput. Phys.
18 (2), 351–379.

Rossi, E., Colagrossi, A., Durante, D. & Graziani, G.
2016
Simulating 2D viscous flow around geometries with vertices through the diffused vortex hydrodynamics method. Comput. Meth. Appl. Mech. Engng.

Rossi, E., Colagrossi, A. & Graziani, G.
2015b
Numerical simulation of 2D-vorticity dynamics using particle methods. Comput. Math. Appl.
69 (12), 1484–1503.

Sun, P. N., Colagrossi, A., Marrone, S., Antuono, A. & Zhang, A. M.
2018
Multi-resolution Delta-plus-SPH with tensile instability control: towards high Reynolds number flows. Comput. Phys. Commun.
224, 63–80.

Sun, P. N., Colagrossi, A., Marrone, S. & Zhang, A. M.
2017
The 𝛿-plus-SPH model: simple procedures for a further improvement of the SPH scheme. Comput. Meth. Appl. Mech. Engng
315 (Supplement C), 25–49.

Titarev, V. A. & Toro, E. F.
2004
Finite-volume WENO schemes for three dimensional conservation laws. J. Comput. Phys.
201, 238–260.

Uranga, A., Persson, P.-O., Drela, M. & Peraire, J.
2011
Implicit large eddy simulation of transition to turbulence at low Reynolds numbers using a discontinuous Galerkin method. Intl J. Numer. Meth. Engng
87 (1–5), 232–261.

Zdravkovich, M. M.
1997
Flow around circular cylinders. Fundamentals
1.