Skip to main content
×
Home

The near-wall region of highly turbulent Taylor–Couette flow

  • Rodolfo Ostilla-Mónico (a1), Roberto Verzicco (a1) (a2), Siegfried Grossmann (a3) and Detlef Lohse (a1)
Abstract

Direct numerical simulations of the Taylor–Couette (TC) problem, the flow between two coaxial and independently rotating cylinders, have been performed. The study focuses on TC flow with mild curvature (small gap) with a radius ratio of ${\it\eta}=r_{i}/r_{o}=0.909$ , an aspect ratio of ${\it\Gamma}=L/d=2{\rm\pi}/3$ , and a stationary outer cylinder. Three inner cylinder Reynolds numbers of $1\times 10^{5}$ , $2\times 10^{5}$ and $3\times 10^{5}$ were simulated, corresponding to frictional Reynolds numbers between $Re_{{\it\tau}}\approx 1400$ and $Re_{{\it\tau}}\approx 4000$ . An additional case with a large gap, ${\it\eta}=0.5$ and driving of $Re=2\times 10^{5}$ was also investigated. Small-gap TC was found to be dominated by spatially fixed large-scale structures, known as Taylor rolls (TRs). TRs are attached to the boundary layer, and are active, i.e. they transport angular velocity through Reynolds stresses. An additional simulation was also conducted with inner cylinder Reynolds number of $Re=1\times 10^{5}$ and fixed outer cylinder with an externally imposed axial flow of comparable strength to the wind of the TRs. The axial flow was found to convect the TRs without any weakening effect. For small-gap TC flow, evidence was found for the existence of logarithmic velocity fluctuations, and of an overlap layer, in which the velocity fluctuations collapse in outer units. Profiles consistent with a logarithmic dependence were also found for the angular velocity in large-gap TC flow, albeit in a very reduced range of scales. Finally, the behaviour of both small- and large-gap TC flow was compared to other canonical flows. Small-gap TC flow has similar behaviour in the near-wall region to other canonical flows, while large-gap TC flow displays very different behaviour.

Copyright
Corresponding author
Email address for correspondence: R.Ostillamonico@utwente.nl
References
Hide All
Afzal N. & Yajnik K. 1973 Analysis of turbulent pipe and channel flows at moderately large Reynolds number. J. Fluid Mech. 61, 2331.
Ahlers G., Grossmann S. & Lohse D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.
Avsarkisov V., Hoyas S., Oberlack M. & García-Galache J. P. 2014 Turbulent plane Couette flow at moderately high Reynolds number. J. Fluid Mech. 751, R1R8.
Bailey S. C. C., Vallikivi M., Hultmark M. & Smits A. J. 2014 Estimating the value of von Kármáns constant in turbulent pipe flow. J. Fluid Mech. 749, 7998.
Bech K. H., Tillmark N., Alfredsson P. H. & Andersson H. I. 1995 An investigation of turbulent plane Couette flow at low Reynolds numbers. J. Fluid Mech. 286, 291325.
van den Berg T. H., Luther S., Lathrop D. P. & Lohse D. 2005 Drag reduction in bubbly Taylor–Couette turbulence. Phys. Rev. Lett. 94, 044501.
Bernardini M., Pirozzoli S. & Orlandi P. 2014 Velocity statistics in turbulent channel flow up to inline-graphic $Re_{{\it\tau}}=4000$ . J. Fluid Mech. 742, 171191.
Bradshaw P.1973 The effects of streamline curvature on turbulent flow Tech. Rep. no. 169. AGARDograph.
Brauckmann H. & Eckhardt B. 2013 Direct numerical simulations of local and global torque in Taylor–Couette flow up to inline-graphic $Re=30.000$ . J. Fluid Mech. 718, 398427.
Brauckmann H., Salewski M. & Eckhardt B.2015 Momentum transport in Taylor–Couette flow with vanishing curvature (under review), arXiv:1505.06278.
Chandrasekhar S. 1960a The hydrodynamic stability of inviscid flow between coaxial cylinders. Proc. Natl Acad. Sci. USA 46 (1), 137141.
Chandrasekhar S. 1960b The hydrodynamic stability of viscid flow between coaxial cylinders. Proc. Natl Acad. Sci. USA 46 (1), 141143.
Chandrasekhar S. 1981 Hydrodynamic and Hydromagnetic Stability. Dover.
Choi H., Moin P. & Kim J. 1993 Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech. 255, 503539.
Dong S. 2007 Direct numerical simulation of turbulent Taylor–Couette flow. J. Fluid Mech. 587, 373393.
Dong S. 2008 Turbulent flow between counter-rotating concentric cylinders: a direct numerical simulation study. J. Fluid Mech. 615, 371399.
Faisst H. & Eckhardt B. 2000 Transition from the Couette–Taylor system to the plane Couette system. Phys. Rev. E 61, 72277230.
van Gils D. P. M., Narezo-Guzman D., Sun C. & Lohse D. 2013 The importance of bubble deformability for strong drag reduction in bubbly turbulent Taylor–Couette flow. J. Fluid Mech. 722, 317347.
Grossmann S., Lohse D. & Sun C. 2014 Velocity profiles in strongly turbulent Taylor–Couette flow. Phys. Fluids 26, 025114.
Grossmann S., Lohse D. & Sun C. 2016 High-Reynolds number Taylor–Couette turbulence. Annu. Rev. Fluid Mech. 48, 5380.
Hoffmann P. H., Muck K. C. & Bradshaw P. 1985 The effect of concave surface curvature on turbulent boundary layers. J. Fluid Mech. 161, 371403.
Hoyas S. & Jiménez J. 2006 Scaling of the velocity fluctuations in turbulent channels up to inline-graphic $Re_{{\it\tau}}=2003$ . Phys. Fluids 18, 011702.
Huisman S. G., van Gils D. P. M., Grossmann S., Sun C. & Lohse D. 2012 Ultimate turbulent Taylor–Couette flow. Phys. Rev. Lett. 108, 024501.
Huisman S. G., Scharnowski S., Cierpka C., Kähler C., Lohse D. & Sun C. 2013 Logarithmic boundary layers in strong Taylor–Couette turbulence. Phys. Rev. Lett. 110, 264501.
Huisman S. G., van der Veen R. C. A., Sun C. & Lohse D. 2014 Multiple states in highly turbulent Taylor–Couette turbulence. Nat. Commun. 5, 3820.
Hunt I. A. & Joubert P. N. 1979 Effects of small streamline curvature on turbulent duct flow. J. Fluid Mech. 91, 633659.
Hwang J.-Y. & Yang K.-S. 2004 Numerical study of Taylor–Couette flow with an axial flow. Comput. Fluids 33, 97118.
Jimenez J. 2012 Cascades in wall-bounded turbulence. Annu. Rev. Fluid Mech. 44, 2745.
Jiménez J. & Moser R. 2007 What are we learning from simulating wall turbulence? Phil. Trans. R. Soc. Lond. A 365, 715732.
Kim H. T., Moin P. & Moser R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133160.
Lee M. & Moser R. D. 2015 Direct numerical simulation of turbulent channel flow up to inline-graphic $Re_{{\it\tau}}=5200$ . J. Fluid Mech. 774, 395415.
Lewis G. S. & Swinney H. L. 1999 Velocity structure functions, scaling, and transitions in high-Reynolds-number Couette–Taylor flow. Phys. Rev. E 59, 54575467.
Lozano-Durán A., Flores O. & Jiménez J. 2012 The three-dimensional structure of momentum transfer in turbulent channels. J. Fluid Mech. 694, 100130.
Lozano-Durán A. & Jiménez J. 2014 Effect of the computational domain on direct simulations of turbulent channels up to inline-graphic $Re_{{\it\tau}}=4200$ . Phys. Fluids 26, 011702.
Lu J., Fernández A. & Tryggvason G. 2005 The effect of bubbles on the wall drag in a turbulent channel flow. Phys. Fluids 17, 095102.
Lueptow R. M., Docter A. & Min K. 1992 Stability of axial flow in an annulus with a rotating inner cylinder. Phys. Fluids 4 (11), 24462455.
Marcus P. S. 1984 Simulation of Taylor–Couette flow. Part 2. Numerical results for wavy-vortex flow with one traveling wave. J. Fluid Mech. 146, 65113.
Martinez-Arias B., Peixinho J., Crumeyrolle O. & Mutabazi I. 2014 Effect of the number of vortices on the torque scaling in Taylor–Couette flow. J. Fluid Mech. 748, 756767.
Marusic I., Monty J. P., Hultmark M. & Smits A. J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3.
Moser R. D. & Moin P. 1986 The effects of curvature in wall-bounded flow. J. Fluid Mech. 175, 479510.
Ng B. S. & Turner E. R. 1982 On the linear stability of spiral flow between rotating cylinders. Proc. R. Soc. Lond. A 382 (1782), 83102.
Ostilla-Monico R., Huisman S. G., Jannink T. J. G., van Gils D. P. M., Verzicco R., Grossmann S., Sun C. & Lohse D. 2014a Optimal Taylor–Couette flow: radius ratio dependence. J. Fluid Mech. 747, 129.
Ostilla-Monico R., van der Poel E. P., Verzicco R., Grossmann S. & Lohse D. 2014b Boundary layer dynamics at the transition between the classical and the ultimate regime of Taylor–Couette flow. Phys. Fluids 26, 015114.
Ostilla-Monico R., van der Poel E. P., Verzicco R., Grossmann S. & Lohse D. 2014c Exploring the phase diagram of fully turbulent Taylor–Couette flow. J. Fluid Mech. 761, 126.
Ostilla-Mónico R., Verzicco R. & Lohse D. 2015 Effects of the computational domain size on DNS of Taylor–Couette turbulence with stationary outer cylinder. Phys. Fluids 27, 025110.
Perry A. E. & Chong M. S. 1982 On the mechanism of wall turbulence. J. Fluid Mech. 119, 173217.
Perry A. E., Henbest S. & Chong M. S. 1986 A theoretical and experimental study of wall turbulence. J. Fluid Mech. 165, 163199.
Pirozzoli S., Bernardini M. & Orlandi P. 2014 Turbulence statistics in Couette flow at high Reynolds number. J. Fluid Mech. 758, 327343.
van der Poel E. P., Ostilla-Monico R., Donners J. & Verzicco R. 2015 A pencil distributed finite difference code for strongly turbulent wall-bounded flows. Comput. Fluids 116, 1016.
Pope S. B. 2000 Turbulent Flow. Cambridge University Press.
Schwarz K. W., Pringett B. E. & Donnelly R. J. 1964 Modes of instability in spiral flow between rotating cylinders. J. Fluid Mech. 20, 281289.
Sillero J. A., Jiménez J. & Moser R. D. 2013 One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to inline-graphic ${\it\delta}+\approx 2000$ . Phys. Fluids 25, 105102.
Snyder H. A. 1962 Experiments on the stability of spiral flow at low axial Reynolds numbers. Proc. R. Soc. Lond. A 265 (1321), 198214.
Takeuchi D. I. & Jankowski D. F. 1981 A numerical and experimental investigation of the stability of spiral Poiseuille flow. J. Fluid Mech. 102, 101126.
Taylor G. I. 1923 Experiments on the motion of solid bodies in rotating fluids. Proc. R. Soc. Lond. A 104, 213218.
Townsend A. A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.
Tsameret A. & Steinberg V. 1994 Competing states in a Couette–Taylor system with an axial flow. Phys. Rev. E 49 (5), 40774087.
Tsukahara T., Kawamura H. & Shingai K. 2006 DNS of turbulent Couette flow with emphasis on the large-scale structure in the core region. J. Turbul. 7, 19.
van der Veen R. C. A., Huisman S., Merbold S., Harlander U., Egbers C., Lohse D. & Sun C.2015 Taylor–Couette turbulence at radius ratio inline-graphic ${\it\eta}=0.5$ : scaling, flow structures and plumes (under review), arXiv:1508.05802.
Verzicco R. & Orlandi P. 1996 A finite-difference scheme for three-dimensional incompressible flow in cylindrical coordinates. J. Comput. Phys. 123, 402413.
Wereley S. T. & Lueptow R. M. 1994 Azimuthal velocity in supercritical circular Couette flow. Exp. Fluids 18 (1–2), 19.
Wereley S. T. & Lueptow R. M. 1999 Velocity field for Taylor–Couette flow with an axial flow. Phys. Fluids 11 (12), 36373649.
Wu X. & Moin P. 2008 A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J. Fluid Mech. 608, 81112.
Zhu X., Ostilla-Mónico R., Verzicco R. & Lohse D.2015 Direct numerical simulations of Taylor–Couette flow with grooved cylinders (under review), arXiv:1510.01608.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 7
Total number of PDF views: 178 *
Loading metrics...

Abstract views

Total abstract views: 332 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th November 2017. This data will be updated every 24 hours.