Afzal, N. & Yajnik, K.
1973
Analysis of turbulent pipe and channel flows at moderately large Reynolds number. J. Fluid Mech.
61, 23–31.

Ahlers, G., Grossmann, S. & Lohse, D.
2009
Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys.
81, 503–537.

Avsarkisov, V., Hoyas, S., Oberlack, M. & García-Galache, J. P.
2014
Turbulent plane Couette flow at moderately high Reynolds number. J. Fluid Mech.
751, R1–R8.

Bailey, S. C. C., Vallikivi, M., Hultmark, M. & Smits, A. J.
2014
Estimating the value of von Kármáns constant in turbulent pipe flow. J. Fluid Mech.
749, 79–98.

Bech, K. H., Tillmark, N., Alfredsson, P. H. & Andersson, H. I.
1995
An investigation of turbulent plane Couette flow at low Reynolds numbers. J. Fluid Mech.
286, 291–325.

van den Berg, T. H., Luther, S., Lathrop, D. P. & Lohse, D.
2005
Drag reduction in bubbly Taylor–Couette turbulence. Phys. Rev. Lett.
94, 044501.

Bernardini, M., Pirozzoli, S. & Orlandi, P.
2014
Velocity statistics in turbulent channel flow up to
. J. Fluid Mech.
742, 171–191.

Bradshaw, P.1973 The effects of streamline curvature on turbulent flow *Tech. Rep.* no. 169. AGARDograph.

Brauckmann, H. & Eckhardt, B.
2013
Direct numerical simulations of local and global torque in Taylor–Couette flow up to
. J. Fluid Mech.
718, 398–427.

Brauckmann, H., Salewski, M. & Eckhardt, B.2015 Momentum transport in Taylor–Couette flow with vanishing curvature (under review), arXiv:1505.06278.
Chandrasekhar, S.
1960a
The hydrodynamic stability of inviscid flow between coaxial cylinders. Proc. Natl Acad. Sci. USA
46 (1), 137–141.

Chandrasekhar, S.
1960b
The hydrodynamic stability of viscid flow between coaxial cylinders. Proc. Natl Acad. Sci. USA
46 (1), 141–143.

Chandrasekhar, S.
1981
Hydrodynamic and Hydromagnetic Stability. Dover.

Choi, H., Moin, P. & Kim, J.
1993
Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech.
255, 503–539.

Dong, S.
2007
Direct numerical simulation of turbulent Taylor–Couette flow. J. Fluid Mech.
587, 373–393.

Dong, S.
2008
Turbulent flow between counter-rotating concentric cylinders: a direct numerical simulation study. J. Fluid Mech.
615, 371–399.

Faisst, H. & Eckhardt, B.
2000
Transition from the Couette–Taylor system to the plane Couette system. Phys. Rev. E
61, 7227–7230.

van Gils, D. P. M., Narezo-Guzman, D., Sun, C. & Lohse, D.
2013
The importance of bubble deformability for strong drag reduction in bubbly turbulent Taylor–Couette flow. J. Fluid Mech.
722, 317–347.

Grossmann, S., Lohse, D. & Sun, C.
2014
Velocity profiles in strongly turbulent Taylor–Couette flow. Phys. Fluids
26, 025114.

Grossmann, S., Lohse, D. & Sun, C.
2016
High-Reynolds number Taylor–Couette turbulence. Annu. Rev. Fluid Mech.
48, 53–80.

Hoffmann, P. H., Muck, K. C. & Bradshaw, P.
1985
The effect of concave surface curvature on turbulent boundary layers. J. Fluid Mech.
161, 371–403.

Hoyas, S. & Jiménez, J.
2006
Scaling of the velocity fluctuations in turbulent channels up to
. Phys. Fluids
18, 011702.

Huisman, S. G., van Gils, D. P. M., Grossmann, S., Sun, C. & Lohse, D.
2012
Ultimate turbulent Taylor–Couette flow. Phys. Rev. Lett.
108, 024501.

Huisman, S. G., Scharnowski, S., Cierpka, C., Kähler, C., Lohse, D. & Sun, C.
2013
Logarithmic boundary layers in strong Taylor–Couette turbulence. Phys. Rev. Lett.
110, 264501.

Huisman, S. G., van der Veen, R. C. A., Sun, C. & Lohse, D.
2014
Multiple states in highly turbulent Taylor–Couette turbulence. Nat. Commun.
5, 3820.

Hunt, I. A. & Joubert, P. N.
1979
Effects of small streamline curvature on turbulent duct flow. J. Fluid Mech.
91, 633–659.

Hwang, J.-Y. & Yang, K.-S.
2004
Numerical study of Taylor–Couette flow with an axial flow. Comput. Fluids
33, 97–118.

Jimenez, J.
2012
Cascades in wall-bounded turbulence. Annu. Rev. Fluid Mech.
44, 27–45.

Jiménez, J. & Moser, R.
2007
What are we learning from simulating wall turbulence?
Phil. Trans. R. Soc. Lond. A
365, 715–732.

Kim, H. T., Moin, P. & Moser, R.
1987
Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech.
177, 133–160.

Lee, M. & Moser, R. D.
2015
Direct numerical simulation of turbulent channel flow up to
. J. Fluid Mech.
774, 395–415.

Lewis, G. S. & Swinney, H. L.
1999
Velocity structure functions, scaling, and transitions in high-Reynolds-number Couette–Taylor flow. Phys. Rev. E
59, 5457–5467.

Lozano-Durán, A., Flores, O. & Jiménez, J.
2012
The three-dimensional structure of momentum transfer in turbulent channels. J. Fluid Mech.
694, 100–130.

Lozano-Durán, A. & Jiménez, J.
2014
Effect of the computational domain on direct simulations of turbulent channels up to
. Phys. Fluids
26, 011702.

Lu, J., Fernández, A. & Tryggvason, G.
2005
The effect of bubbles on the wall drag in a turbulent channel flow. Phys. Fluids
17, 095102.

Lueptow, R. M., Docter, A. & Min, K.
1992
Stability of axial flow in an annulus with a rotating inner cylinder. Phys. Fluids
4 (11), 2446–2455.

Marcus, P. S.
1984
Simulation of Taylor–Couette flow. Part 2. Numerical results for wavy-vortex flow with one traveling wave. J. Fluid Mech.
146, 65–113.

Martinez-Arias, B., Peixinho, J., Crumeyrolle, O. & Mutabazi, I.
2014
Effect of the number of vortices on the torque scaling in Taylor–Couette flow. J. Fluid Mech.
748, 756–767.

Marusic, I., Monty, J. P., Hultmark, M. & Smits, A. J.
2013
On the logarithmic region in wall turbulence. J. Fluid Mech.
716, R3.

Moser, R. D. & Moin, P.
1986
The effects of curvature in wall-bounded flow. J. Fluid Mech.
175, 479–510.

Ng, B. S. & Turner, E. R.
1982
On the linear stability of spiral flow between rotating cylinders. Proc. R. Soc. Lond. A
382 (1782), 83–102.

Ostilla-Monico, R., Huisman, S. G., Jannink, T. J. G., van Gils, D. P. M., Verzicco, R., Grossmann, S., Sun, C. & Lohse, D.
2014a
Optimal Taylor–Couette flow: radius ratio dependence. J. Fluid Mech.
747, 1–29.

Ostilla-Monico, R., van der Poel, E. P., Verzicco, R., Grossmann, S. & Lohse, D.
2014b
Boundary layer dynamics at the transition between the classical and the ultimate regime of Taylor–Couette flow. Phys. Fluids
26, 015114.

Ostilla-Monico, R., van der Poel, E. P., Verzicco, R., Grossmann, S. & Lohse, D.
2014c
Exploring the phase diagram of fully turbulent Taylor–Couette flow. J. Fluid Mech.
761, 1–26.

Ostilla-Mónico, R., Verzicco, R. & Lohse, D.
2015
Effects of the computational domain size on DNS of Taylor–Couette turbulence with stationary outer cylinder. Phys. Fluids
27, 025110.

Perry, A. E. & Chong, M. S.
1982
On the mechanism of wall turbulence. J. Fluid Mech.
119, 173–217.

Perry, A. E., Henbest, S. & Chong, M. S.
1986
A theoretical and experimental study of wall turbulence. J. Fluid Mech.
165, 163–199.

Pirozzoli, S., Bernardini, M. & Orlandi, P.
2014
Turbulence statistics in Couette flow at high Reynolds number. J. Fluid Mech.
758, 327–343.

van der Poel, E. P., Ostilla-Monico, R., Donners, J. & Verzicco, R.
2015
A pencil distributed finite difference code for strongly turbulent wall-bounded flows. Comput. Fluids
116, 10–16.

Pope, S. B.
2000
Turbulent Flow. Cambridge University Press.

Schwarz, K. W., Pringett, B. E. & Donnelly, R. J.
1964
Modes of instability in spiral flow between rotating cylinders. J. Fluid Mech.
20, 281–289.

Sillero, J. A., Jiménez, J. & Moser, R. D.
2013
One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to
. Phys. Fluids
25, 105102.

Snyder, H. A.
1962
Experiments on the stability of spiral flow at low axial Reynolds numbers. Proc. R. Soc. Lond. A
265 (1321), 198–214.

Takeuchi, D. I. & Jankowski, D. F.
1981
A numerical and experimental investigation of the stability of spiral Poiseuille flow. J. Fluid Mech.
102, 101–126.

Taylor, G. I.
1923
Experiments on the motion of solid bodies in rotating fluids. Proc. R. Soc. Lond. A
104, 213–218.

Townsend, A. A.
1976
The Structure of Turbulent Shear Flow. Cambridge University Press.

Tsameret, A. & Steinberg, V.
1994
Competing states in a Couette–Taylor system with an axial flow. Phys. Rev. E
49 (5), 4077–4087.

Tsukahara, T., Kawamura, H. & Shingai, K.
2006
DNS of turbulent Couette flow with emphasis on the large-scale structure in the core region. J. Turbul.
7, 19.

van der Veen, R. C. A., Huisman, S., Merbold, S., Harlander, U., Egbers, C., Lohse, D. & Sun, C.2015 Taylor–Couette turbulence at radius ratio
: scaling, flow structures and plumes (under review), arXiv:1508.05802.
Verzicco, R. & Orlandi, P.
1996
A finite-difference scheme for three-dimensional incompressible flow in cylindrical coordinates. J. Comput. Phys.
123, 402–413.

Wereley, S. T. & Lueptow, R. M.
1994
Azimuthal velocity in supercritical circular Couette flow. Exp. Fluids
18 (1–2), 1–9.

Wereley, S. T. & Lueptow, R. M.
1999
Velocity field for Taylor–Couette flow with an axial flow. Phys. Fluids
11 (12), 3637–3649.

Wu, X. & Moin, P.
2008
A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J. Fluid Mech.
608, 81–112.

Zhu, X., Ostilla-Mónico, R., Verzicco, R. & Lohse, D.2015 Direct numerical simulations of Taylor–Couette flow with grooved cylinders (under review), arXiv:1510.01608.